
DataDeploy™

Administration Guide

Release 5.5.1

Copyright 1999-2002 Interwoven, Inc. All rights reserved.

No part of this publication (hardcopy or electronic form) may be
reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Interwoven. Information in
this manual is furnished under license by Interwoven, Inc. and
may only be used in accordance with the terms of the license
agreement. If this software or documentation directs you to
copy materials, you must first have permission from the
copyright owner of the materials to avoid violating the law,
which could result in damages or other remedies.

Interwoven, TeamSite, OpenDeploy and the logo are registered
trademarks of Interwoven, Inc., which may be registered in
certain jurisdictions. SmartContext, DataDeploy, Content
Express, OpenChannel, OpenSyndicate, MetaTagger,
MetaSource, TeamCatalog, TeamXpress, TeamXML, the
tagline and service mark are trademarks of Interwoven, Inc.,
which may be registered in certain jurisdictions. All other
trademarks are owned by their respective owners.

Interwoven, Inc.

803 11th Ave.

Sunnyvale, CA 94089

http://www.interwoven.com

Printed in the United States of America

Release 5.5.1

Part # 40-00-20-25-00-551-300

Table of Contents

About This Book 9
Typographical and Notation Conventions 9

Typographical Conventions 9
iw-home and dd-home Notation on Solaris and Windows Systems 11
Notation Conventions for Directory Paths 12

Editing Text on Windows Systems 12
Online Documentation Errata 12

Chapter 1: Introduction 13
Case Study: Acme Corp. 14

The DataDeploy Advantage 15

Chapter 2: Installation 17
Client/Server Setup Options 18
Running the DataDeploy Daemon as a Service 19
Installation Procedures 19

Solaris Systems 19
Windows Systems 20
Setting Up DAS and Metadata Capture 20
Resynchronizing the Tracker Table 21

Uninstalling DataDeploy 22

Chapter 3: Deployment Concepts 23
Ways to Invoke Deployment 23
Configuration Files 25

File Components 25
Incremental Deployment 26

Deployment Scenarios 27
Deploying from TeamSite to a Database: Overview 27

Data Sources 28
Data Destinations 29
Base Table Format: Narrow Tuples 31
Base Table Format: Wide Tuples 32
Data Synchronization 33

Deploying from TeamSite to a Database: Details 33
3

Generating an Initial Base Table 34
Generating a Delta Table 35
Updating a Base Table 36
Table Updates 38
Composite Table Views 39

Chapter 4: Data Organization 41
Overview 41
Deploying Data with Narrow Tuples 43
Deploying Data with Wide Tuples 45
Deploying Data to User-Defined Database Schemas: Overview 49
Deploying Data to User-Defined Database Schemas: Architectural Details 53

Creating Database Tables with User-Defined Database Schemas 54
Rules for Implementing User-Defined Database Schemas 58

General Rules for Deploying with User-Defined Database Schemas 58
Consistency Rules for dbschema.cfg 59

Sample Mappings of dbschema.cfg 61
Sample of basearea Deployment Section 67

iwsyncdb.ipl Support for User-Defined Database Schemas 74
Creating dbschema.cfg Files 74
Validating dbschema.cfg Files 75

Validation of dbschema.cfg Files Using iwsyncdb.ipl -ddgen or -initial 75
Validation of dbschema.cfg Files Using iwsyncdb.ipl -validate 75

Deploying Custom Data Content Records 76
The value-from-element and value-from-attribute Attributes 77
The custom Attribute 79

Deploying Data to User-Defined Database Schemas: Support for Metadata Deployment 80
Standalone Mode 80
DAS Mode 81

Deploying Data from an External Data Source 81
Example Implementation of the External Data Source Interface 85

Deploying Data Pointed to from an URL 91
Deploying Replicant Order Numbers 92
Enhancing Data Before Deployment 93
Deploying a Non-replicant Comma Separated List of Values as Replicant Values 99
Other Data Organization Issues 103

Data Types and Sizes 103
Database Object Name Lengths 103
4 DataDeploy Administration Guide

Chapter 5: Configuration File Details and Examples 105
Required Elements 105

TeamSite-to-Database 106
TeamSite-to-XML 106
Database-to-Database 107
Database-to-XML 107
XML-to-Database 108
XML-to-XML 108

Parameter Substitutions 109
Sample TeamSite-to-Database Configuration File 109

Sample File Notes 115
User-defined Database Schema <database> Attributes 124
Performance Enhancement for Deploying Heavily Nested DCRs 131
db Attribute Syntax 132

Sample TeamSite-to-XML Configuration File 141
Sample Database-to-Database Configuration File 143
Sample Database-to-XML Configuration File: Extracting Data Tuples from a Single Table 145
Sample Database-to-XML Configuration File: Filtering 147
Sample Database-to-XML Configuration File: Extracting Data Tuples from Multiple Tables 149
Sample XML-to-Database Configuration File 151
Sample XML-to-XML Configuration File 153
Starting-State Base Table Configuration File 155
Event 1 Configuration File 156
Event 2 Configuration File 157

Chapter 6: Invoking DataDeploy 159
iwdd.ipl Command 159

Usage 159
Syntax 159
Examples 161

Running DataDeploy as a Service 162
5

Chapter 7: Synchronizing OpenDeploy and DataDeploy 163
Additional Resources 163
Component Location 163
Setup 164
Component Descriptions 165
Usage 167
How the Integration Works 167

ddsync.ipl Usage 168
Notes 170

Chapter 8: Automating Deployment with DAS 171
Overview 171
DAS , The Event Server, and Internationalization 172
Software Requirements 172
DAS Program and Configuration Files 172
Configuring DAS 174

Editing DataDeploy Configuration Files 174
Editing ddcfg.template and drop.cfg 175
Editing iwsyncdb.cfg 175

Editing iw.cfg 176
Running iwsyncdb.ipl 176

Starting iwsyncdb.ipl 176
iwsyncdb.ipl Activities 177

Using DAS 181
Figure 3 Key 182
Table Update Details 182

Specifying How Tables are Updated 182
Table Naming Conventions 183
Table Update Examples 184

TeamSite Event Triggers 185
Logging DAS Activities 187
Disabling DAS 188
iwsyncdb.ipl Usage 189

Appendix A: Database Server Configuration 193
Overview 193
IBM DB2 193

Setting Page and Table Sizes 193
6 DataDeploy Administration Guide

Installing and Starting JDBC 194
Sybase ASE 194

Enabling DDL Statements 194
Setting Sort Order 195
Install Stored Procedures 195

Informix 195
Enabling Logging 195

Appendix B: Querying Tables 197
Querying Base and Standalone Tables 197
Querying Delta Tables 197

Appendix C: Event Server 199
How the Event Server Works 199
Supported Applications 200
Supported Databases 201
Prerequisites 201
Installing and Enabling the Event Server 201
Configuring the Event Sever to Work with DAS 202

Setting Up a Database for Event Persistence 202
Setting Up Event Filters for DAS 204

Sample Filter Section in daemon.cfg 204
A Note About Filtering Events by Timestamp 206

The jmsconfig_rdbms.xml.example File 207

Appendix D: Internationalization 211
DataDeploy Configuration Files 211
DAS in a Non-U.S. English Environment 211
OpenDeploy–DataDeploy Synchronization 211
The -mb option for iwsycdb.ipl 212
Microsoft SQL Server 212
IBM DB2 Specific Information 212

DAS Mode 213
Example 213

Standalone Mode 213
7

The DataDeploy Administration GUI 214
Test Environments 214
Miscellaneous 214

Index 215
8 DataDeploy Administration Guide

About This Book

The DataDeploy Administration Guide describes how to install, configure, and use DataDeploy™ with
TeamSite® and TeamSite Templating.

This guide is primarily intended for Web server administrators and system administrators. Users of
this manual should be familiar with basic UNIX® or Windows® commands (as appropriate) and be
able to use a text editor such as emacs or vi (on UNIX) or Notepad (on Windows NT® or Windows
2000). Many of the operations described in this manual require UNIX root or Windows
Administrator access to the TeamSite server.

Typographical and Notation Conventions

This section describes the following typographical and notation conventions:

• Typographical Conventions

• iw-home and dd-home Notation on Solaris™ and Windows Systems

• Notation Conventions for Directory Paths

Typographical Conventions

This manual uses the following notation conventions:

Convention Definition and Usage

Bold Text that appears in a GUI element (for example, a menu item, button, or
element of a dialog box) and command names are shown in bold. For example:

Click Edit File in the Button Bar.
9

Italic Book titles appear in italics.
Terms are italicized the first time they are introduced.
Important information may be italicized for emphasis.

Monospace Commands, command-line output, and file names are in monospace type. For
example:

The iwextattr command-line tool allows you to set and look up
extended attributes on a file.

Monospaced
italic

Monospaced italics are used for command-line variables. For example:

iwckrole role user

This means that you must replace role and user with your values.

Monospaced
bold

Monospaced bold represents information you enter in response to system
prompts. The character that appears before a line of user input represents the
command prompt, and should not be typed. For example:

iwextattr -s project=proj1 //IWSERVER/default/main/
dev/WORKAREA/andre/products/index.html

Monospaced
bold italic

Monospaced bold italic text is used to indicate a variable in user input. For
example:

% iwextattr -s project=projectname workareavpath

means that you must insert the values of projectname and workareavpath
when you enter this command.

[] Square brackets surrounding a command-line argument mean that the argument
is optional.

| Vertical bars separating command-line arguments mean that only one of the
arguments can be used.

Convention Definition and Usage
10 DataDeploy Administration Guide

Typographical and Notation Conventions
iw-home and dd-home Notation on Solaris and Windows Systems

iw-home

This manual does not use the Solaris notation (iw-home; note the lack of italics) except when
specifically referring to procedures performed only in Solaris (as in the Solaris section of “Installation
Procedures” on page 19).

This manual uses the Windows version of iw-home notation (iw-home) when discussing both
Solaris™ and Windows NT or Windows 2000 systems. The italics are an Interwoven convention
identifying iw-home as a variable. You should interpret the iw-home notation used in this manual as
follows:

• On Solaris systems, iw-home is the literal name of the directory containing the TeamSite program
files.

• On Windows systems, iw-home is the symbolic name of the directory that contains your
TeamSite program files. The default value of iw-home on Windows systems is:

C:\Program Files\Interwoven\TeamSite

The administrator performing Windows installation may have chosen an installation directory
different from the default.

dd-home

Certain files that you will need to edit are located in a directory called dd-home. The italics are an
Interwoven convention identifying dd-home as a variable. You should interpret the dd-home
notation used in this manual as follows:

On both Windows and Solaris systems, dd-home is the symbolic name of the directory containing
various DataDeploy files. The default value of dd-home is different, depending on your installation
scenario. See “Installation Procedures” on page 19 to review various default values.
11

Notation Conventions for Directory Paths

This manual uses UNIX conventions for directory paths because this is the convention followed in all
Interwoven cross-platform documentation. These conventions mandate using forward slashes (/).
For example:

docroot/news/front.html

On a Windows system, you would type such a path with backward slashes:

docroot\news\front.html

This manual only uses Windows conventions for paths when referring to a Windows-specific
directory.

Editing Text on Windows Systems

It is recommended that you use WordPad rather than Notepad to edit text on a Windows system.
Other text editors may also be used.

Online Documentation Errata

Additions and corrections to this document are available in PDF format at the following site.
Browse to the download and release notes directories.

http://support.interwoven.com
12 DataDeploy Administration Guide

Chapter 1

Introduction

Welcome, and congratulations on using Interwoven DataDeploy software! DataDeploy is
industry-leading distribution software that enables enterprises to distribute content from Interwoven®
TeamSite repositories to industry-standard relational databases. DataDeploy is a powerful and flexible
tool for supporting your Web development and production environments.

In development environments, the DataDeploy Database Auto-Synchronization (DAS) feature enables
you to automatically update databases when changes are made to content in the TeamSite repository.
XML content and TeamSite metadata can be deployed to tables in relational databases that are
customized based on the content being deployed.

Additionally, you can use DataDeploy to synchronize data between Teamsite editions and
development databases across a firewall. You can perform deployments manually from the
DataDeploy administration graphical user interface (GUI) or command line, or you can schedule
deployments if DataDeploy is used with OpenDeploy.

TeamSite end users submit changes to content in the
TeamSite repository and DAS automatically updates
the development database.

DataDeploy synchronizes content between
TeamSite editions and production databases.

workarea

submit

database

TeamSite editions

D
A

S

Firewall

standalone, or scheduled deployment

Web/application
serverDevelopment Production
13

Introduction
Case Study: Acme Corp.

In this section we introduce a fictional company named Acme, which has recently adopted a suite of
Interwoven products for their enterprise-wide content infrastructure platform. How Acme chooses to
use DataDeploy in conjunction with the other products in the suite illustrates how DataDeploy can
become a key part of your organization’s content infrastructure.

Acme is headquartered in San Francisco with regional centers in Paris, Munich, and Tokyo.
Development and production environments at Acme are heterogeneous: they use a mix of Windows
and UNIX Web servers, and databases from different vendors.

Acme maintains customer Web sites that are localized for each region. Acme’s customer Web sites
feature a large product catalog which is frequently updated, sometimes multiple times a day.
Currently, much of the content and application code for the catalog is developed at the home office in
San Francisco. Regional offices are responsible for making changes suitable for the Web site in their
area to the content they receive from the San Francisco office.

Acme plans to use DataDeploy to meet the following needs:

• Acme uses a variety of industry-standard databases. Furthermore, databases in Paris, Munich, and
Tokyo run in the language locale of their respective region. Acme needs a distribution solution that
can deploy multibyte content across different platforms into localized databases.

• Web application developers need to test their applications with up-to-date content from the
database. To provide that content, databases must be updated when changes to content in the
TeamSite repository are submitted.

• To automate the process of synchronizing TeamSite content with database content, Acme needs
the following:

– Content in a structured form (XML files), or metadata about that content.

– A way to create database schemas that are based on that structured content, or user-defined
schemas.

– A reliable, flexible, and scalable way of triggering deployments.

• Acme wants to dynamically enhance some product information during deployments. For example,
Acme wants price information to be transformed from U.S. dollars to the equivalent price in local
currency when such data is deployed to databases in the regional offices.
14 DataDeploy Administration Guide

Case Study: Acme Corp.
• Because DataDeploy will be used at several sites and by administrators with varying levels of
experience, Acme needs a product that is easy to install and configure.

• Acme will be deploying data outside the protection of firewalls. They need a solution that ensures
that deployed content will remain secure.

The DataDeploy Advantage

DataDeploy offers the following features that met Acme’s needs:

• DataDeploy is an internationalized product that supports the deployment of multibyte content to
non-U.S. English databases.

See Appendix D, “Internationalization” for details about that feature.

• The DataDeploy DAS module automatically synchronizes content between TeamSite areas
(workareas and staging areas) and development databases. When Acme content contributors make
changes to content in their TeamSite areas those changes are immediately reflected in the
development database. Acme’s Web application developers can test their applications with that
up-to-date information.

See Chapter 8, “Automating Deployment with DAS” for details about that feature.

• Acme content contributors use TeamSite Templating to add content to the TeamSite repository.
They also frequently use the TeamSite set metadata feature to “tag” content for later search and
reuse.

In TeamSite Templating, end users create data content records, special XML files that store content.
Those files are created by filling in forms that are based on data capture templates, which are also
XML files. Data capture templates also define the forms that are used to create metadata.

Acme uses many different data capture templates. Using the DataDeploy administration GUI,
Acme can easily map those templates to user-defined schemas, then use DAS to streamline the
synchronization of data between the TeamSite repository and the development database.

See “Deploying Data to User-Defined Database Schemas: Overview” on page 49 for details about
that feature.
15

Introduction
• Acme can then use DAS to streamline the synchronization of data between the TeamSite
repository and the development database. Furthermore, Acme can take advantage of the TeamSite
Event Server component to selectively specify the TeamSite events that will trigger DAS
deployments.

See Appendix C, “Event Server” for details about that feature.

• The DataDeploy tuple preprocessing feature enables Acme to dynamically enhance data before it is
being deployed. For example: Acme headquarters updates the prices for its products and creates a
new edition of their Web site. The data from that edition is deployed to production databases at
the regional offices. During the deployment process, DataDeploy dynamically translates the U.S.
prices into the currency of the target databases’ region.

See “Enhancing Data Before Deployment” on page 93 for details about that feature.

• DataDeploy can be administered through an easy-to-use Web-based graphical user interface.

See the DataDeploy User’s Guide for details about that feature.

• DataDeploy can be integrated with OpenDeploy to provide secure, transactional deployments of
encrypted content to production database by using Secure Socket Layer (SSL). Additionally,
DataDeploy leverages OpenDeploy’s content rollback capabilities. If a deployment fails, database
content is rolled back to a previous version.

See Chapter 7, “Synchronizing OpenDeploy and DataDeploy” for details about that feature.

The features described above illustrate some of the most common ways in which DataDeploy is used.
DataDeploy also includes the following capabilities which you might find useful:

• Deploy source data to XML files

• Filter data during deployments

• Execute SQL queries

• Deploy incremental differences between two TeamSite editions (when integrated with
OpenDeploy)

The next chapter describes the installation of DataDeploy, and the two subsequent chapters describe
basic DataDeploy concepts.
16 DataDeploy Administration Guide

Chapter 2

Installation

This chapter describes DataDeploy setup options and leads you through the tasks required to install
the software.

Refer to the DataDeploy Release Notes for the latest information on the following installation-related
topics:

• Supported operating systems

• Localized operating system support

• RAM requirements

• Storage requirements

• Patch requirements

• Supported browsers

• Compatibility between DataDeploy releases

• Compatibility between DataDeploy and other Interwoven products
17

Installation
Client/Server Setup Options

When deploying to a database, you can set up DataDeploy to operate in either a two-tier or three-tier
architecture.

Two-tier architecture incorporates two systems: the TeamSite server host machine that executes the
DataDeploy client and an application server containing the SQL database. The application server can
be any server on the network (such as the production Web server, although this is not a system
requirement). Two-tier systems are typically used at sites that do not require firewall protection
between the TeamSite server and the application or production server.

Two-Tier Architecture

Three-tier architecture incorporates a third system acting as a DataDeploy server. Three-tier systems
are typically used at sites requiring firewall protection between the TeamSite server and the
application or production Web server. In this scenario, the TeamSite server does not directly connect
to the database server; instead, it connects to the DataDeploy server, which then connects to the
database server. You cannot use DataDeploy’s DAS feature when using a three-tier architecture.

Three-Tier Architecture

TeamSite
Server

DataDeploy
Client

SQL
Database

Database
Server

Deploy

TeamSite
Server

DataDeploy
Client

DataDeploy
Server

Fi
re

w
al

l

Deploy Deploy SQL
Database

Database
Server
18 DataDeploy Administration Guide

Running the DataDeploy Daemon as a Service
Running the DataDeploy Daemon as a Service

You can optionally configure the Interwoven DataDeploy service to start the DataDeploy
daemon for three-tier operation or Database Auto-Synchronization (DAS) operation. When set up for
three-tier operation, the DataDeploy daemon takes its input from the iwdd.ipl command issued
from the command line. When set up for DAS operation, the DataDeploy daemon takes its input
from the iwsyncdb.ipl script that runs as part of DAS startup. See “Editing iwsyncdb.cfg” on
page 175 for information about specifying DAS or three-tier operation. See “Invoking DataDeploy” on
page 159 for details about executing iwdd.ipl from the command line. See “Running iwsyncdb.ipl”
on page 176 for details about iwsyncdb.ipl.

The Interwoven DataDeploy service automatically starts the DataDeploy daemon for DAS
operation if the iwsyncdb.cfg file exists in dd-home/conf. If iwsyncdb.cfg does not exist, the
Interwoven DataDeploy service starts the DataDeploy daemon for three-tier operation.

Installation Procedures

The following subsections describe installation on Solaris and Windows operating systems.

Solaris Systems

To install DataDeploy on a Solaris system:

1. Change user to root.

2. Unzip and untar the DataDeploy tar file:

gunzip < datadeploy.tar.gz | tar -xvpf -

where datadeploy.tar.gz is a variable representing the name of the compressed tar file
containing the DataDeploy software.

After you execute this command, a datadeploy directory and its associated subdirectories are
created if they do not already exist.

3. Go to the datadeploy directory and execute the startinstalldd script.

4. Specify where you want to install DataDeploy.
19

Installation
5. If TeamSite and TeamSite Templating is installed on the system where you are installing
DataDeploy, you are prompted to select whether you want to activate the DataDeploy
administration graphical user interface.

After DataDeploy is installed, you may need to resynchronize the tracker table. Refer
“Resynchronizing the Tracker Table” on page 21 to determine whether this procedure is necessary.

Windows Systems

To install DataDeploy on a Windows system (Windows NT or Windows 2000):

1. Download the DataDeploy bundle from its distribution media. If the file is zipped, unzip it.

2. Double click the DataDeploy bundle icon.

3. If TeamSite and TeamSite Templating is installed on the system where you are installing
DataDeploy, you are prompted to select whether you want to activate the DataDeploy
administration graphical user interface.

4. Select the location where you want to install DataDeploy.

5. Refer to the section “Resynchronizing the Tracker Table” on page 21 to determine whether you
need to perform resychronize the tracker table.

After DataDeploy is installed, you may need to resynchronize the tracker table. Refer
“Resynchronizing the Tracker Table” on page 21 to determine whether this procedure is necessary.

Setting Up DAS and Metadata Capture

If you will use metadata capture with DAS, do the following:

1. Rename the following file:
dd-home/conf/mdc_ddcfg.template.example

to:
dd-home/conf/mdc_ddcfg.template.

2. Configure the appropriate database sections.

3. Ensure that you also set up iw-home/local/config/datacapture.cfg.
20 DataDeploy Administration Guide

Installation Procedures
Resynchronizing the Tracker Table

After DataDeploy is installed, you must resynchronize the tracker table if both of the following are
true:

• You are migrating from TeamSite 4.2.1 to 4.5.1.

• The directory structure from which you were deploying data contained subbranches.

Under these conditions, tracker table resynchronization is necessary to ensure that all tables remain
synchronized if you delete a branch that contains subbranches. For example, resynchronization
ensures that when you delete branch1 from the following directory structure, DataDeploy will
remove not only all tables for branch1 and all of its associated areas, but the tables for branch2 and
all of its associated areas as well.

1. Rename the following file:
dd-home/conf/synctracker.cfg.example

to:
dd-home/conf/synctracker.cfg.

2. Then configure the appropriate database sections.

branch2

branch1
STAGING
WA1

default
main

STAGING

iw-home

WA2

WA3

WA4
21

Installation
3. Execute the following command for each area in the directory structure to update the DataDeploy
tracker table. You only need to perform this step once after DataDeploy is installed.

iwsyncdb.ipl -synctracker vpath

For the example shown above, you would execute the following commands:

iwsyncdb.ipl -synctracker default/main/branch1
iwsyncdb.ipl -synctracker default/main/branch1/STAGING
iwsyncdb.ipl -synctracker default/main/branch1/WA1
iwsyncdb.ipl -synctracker default/main/branch1/WA2
iwsyncdb.ipl -synctracker default/main/branch1/branch2
iwsyncdb.ipl -synctracker default/main/branch1/branch2/STAGING
iwsyncdb.ipl -synctracker default/main/branch1/branch2/WA3
iwsyncdb.ipl -synctracker default/main/branch1/branch2/WA4

See “iwsyncdb.ipl Usage” on page 189 for details about iwsyncdb.ipl.

Uninstalling DataDeploy

Peform the steps that correspond to your platform:

• (Solaris) Go to the dd-home/install directory and run iwuninstalldd.

• (Windows) Select DataDeploy from the Add/Remove Programs dialog box and click Remove.
22 DataDeploy Administration Guide

Chapter 3

Deployment Concepts

This chapter describes the following general deployment concepts and components:

• How different methods of invoking DataDeploy affect your configuration activities.

• The roles and components of DataDeploy configuration files.

• What happens during a TeamSite-to-database deployment.

Among other concepts, the next chapter discusses tuples and data organization. It is recommended
that you understand the concepts in this and the next chapter prior to configuring DataDeploy.

Ways to Invoke Deployment

There are several ways in which to invoke DataDeploy:

• From the command line.

• From an iwat trigger script.

• As a TeamSite workflow task that is not associated with TeamSite Templating.

• From the TeamSite Templating graphical user interface (GUI) using automated deployment,
known as DAS.

Many of the examples in this book are related to DAS. See Chapter 8, “Automating Deployment with
DAS,” for full details.
23

Deployment Concepts
All of these methods require the existence of one or more DataDeploy configuration files. The first
three methods require that you manually create these configuration files. The last method creates all
the necessary DataDeploy configuration files automatically after you have performed the necessary
system setup. The following table shows a summary of each invocation method and its related tasks:

Invocation Method Setup and Invocation Tasks For More Information See...

Command Line • Manually create a DataDeploy con-
figuration file.

• Execute iwdd.ipl from the com-
mand line.

• Deployment occurs when you exe-
cute the command from the com-
mand line.

“Configuration File Details
and Examples” on page 105;
“iwdd.ipl Command” on
page 159.

iwat Trigger Script • Manually create a DataDeploy con-
figuration file.

• Create an iwat trigger script contain-
ing an iwdd.ipl command that ref-
erences the DataDeploy
configuration file.

• Deployment occurs when the iwat
script is triggered.

“Configuration File Details
and Examples” on page 105;
“iwdd.ipl Command” on
page 159; TeamSite Command
Line Tools.

Workflow Task • Manually create a DataDeploy con-
figuration file.

• Create a workflow external task con-
taining an iwdd.ipl command that
references the DataDeploy configu-
ration file.

• Deployment occurs when the exter-
nal task is executed.

“Configuration File Details
and Examples” on page 105;
“iwdd.ipl Command” on
page 159; “Configuring
TeamSite Workflow” in the
TeamSite Administration Guide.

TeamSite Templating GUI • Install TeamSite Templating.
• Configure Database Auto-Synchroni-

zation (DAS).
• Deployment occurs automatically

whenever an end user modifies a data
content record (DCR) through the
TeamSite Templating GUI.

“Automating Deployment
with DAS” on page 171; the
TeamSite Templating Developer’s
Guide.
24 DataDeploy Administration Guide

Configuration Files
Configuration Files

DataDeploy configuration files let you specify the following:

• What, where, and how data is deployed.

• Whether DataDeploy will run as a client or server.

A TeamSite/DataDeploy installation can contain any number of configuration files. The most
common scenario is for a system to contain multiple configuration files, one for each specific type of
deployment.

For the “TeamSite Templating GUI” scenario shown in the preceding table, a DataDeploy
configuration file is automatically created for each data type in the TeamSite Templating directory
structure (in this context, data type refers to a directory in TeamSite Templating’s directory structure;
see page 50 or the TeamSite Templating Developer’s Guide for more information about TeamSite
Templating directories). The correct configuration file is then referenced automatically whenever a
user changes a data content record for a given data type. For more information about automatic
deployment, known as DAS, see Chapter 8, “Automating Deployment with DAS.”

For the other scenarios shown in the preceding table, you must create each configuration file
manually, and then name the file through a command line option for the iwdd.ipl command.

All configuration files, whether created manually or by DAS, contain the same file components. These
components are described in the following subsection.

Note: If you are using DataDeploy in a non-US English environment, see Appendix D,
“Internationalization.”

File Components

All DataDeploy configuration files:

• Can have any name.

• Are in XML format.

• Reside by default in the dd-home/conf directory.
25

Deployment Concepts
A configuration file is structured as a hierarchy of sections, each letting you control a different
deployment parameter. A file can have any number of sections.

Parameters that you can set are:

• Filters that include and exclude possible data sources.

• Substitution rules to replace text and data values automatically during deployment.

• Client-specific parameters and activities.

• Type of deployment (TeamSite-to-database, XML-to-database, and so on).

• Source of extended attribute data (TeamSite, a database, or an XML file).

• Destination of extended attribute data (a database or an XML file).

• Details about source and destination data (specific fields to select, type of table to update or create,
and so on).

• SQL commands that execute automatically during deployment.

• Server-specific parameters (for three-tier systems).

See the sample configuration file sections starting on page 109 for details about configuration file
structure and syntax.

See “Invoking DataDeploy” on page 159 for more information about configuring DataDeploy as a
client or server. See “Configuration File Details and Examples” on page 105 for more information
about controlling all other DataDeploy parameters.

Incremental Deployment

DataDeploy can perform incremental deployments, in which it calculates the differences between any
two specified vpaths and produces a delta table of the changes. The vpaths can be any two arbitrary
TeamSite paths such as edition paths, staging area paths, or workarea paths. See Item 6, “Source Type”
in “Sample File Notes” starting on page 115 for information about configuring an incremental
deployment.
26 DataDeploy Administration Guide

Deployment Scenarios
Deployment Scenarios

This section describes what happens when you execute a TeamSite-to-database deployment. This type
of deployment is used as an example because it is the most commonly configured deployment type, it
requires the most complex configuration files, and it is a type of deployment that you can perform
manually (with the command line) or automatically, with DAS.

This section provides only an overview. To fully understand this section, including the discussion
about base and delta tables, you should also study:

• Chapter 8, “Automating Deployment with DAS.”

• “Sample TeamSite-to-Database Configuration File” on page 109 (describes manually configuring a
file for a TeamSite-to-database deployment).

Other deployment scenarios such as TeamSite-to-XML, XML-to-XML, and so on, are essentially
variations of the TeamSite-to-database deployment. These scenarios are described briefly starting on
page 141.

Deploying from TeamSite to a Database: Overview

Whenever a TeamSite-to-database deployment finishes executing, the end result is an updated table
on the destination system. This table will be either a base table, delta table, or standalone table,
depending on what type of update you instruct DataDeploy to perform (as defined in the
configuration file’s <update> section). Update types are named for the type of table they modify.
For example, a delta update modifies a delta table, and so on.

Details about each type are as follows:

• Base update: Extended attribute data is extracted from a TeamSite workarea, staging area, or
edition, and is deployed to a base table containing full (as opposed to delta) data about the
extended attributes. The most common sources of data for a base table are staging areas and
editions. Whenever a base table is generated, an entry for that table is recorded in a tracker table
residing in the database. See “Data Synchronization” on page 33 for more information.
27

Deployment Concepts
• Delta update: On the TeamSite server, extended attribute data from a workarea is compared with
the extended attribute data in a staging area or edition. Differences—the delta data—are identified
and deployed to a delta table on the destination system. This table contains only the delta data from
the workarea; it does not contain full static data about every item in the workarea (the delta table’s
associated base table should exist from a previous deployment). The relationship between the
workarea data and the data in its parent area (a staging area or edition) is updated in the tracker
table residing in the database. See “Data Synchronization” on page 33 for more information.

• Standalone update: Data is extracted from a TeamSite workarea, staging area, or edition and is
deployed to a standalone table containing full data about the extended attributes. A standalone
update differs from a base update in that it does not generate an entry in the tracker table.

Note: You can execute base and delta table updates manually (from the command line) or as part of
automated deployment, known as DAS. When DAS is configured, certain TeamSite events
automatically trigger deployment.

You can only execute standalone table updates manually; you cannot execute them with DAS.

Data Sources

When you deploy extended attribute data from TeamSite to a database, you can specify that it come
from a TeamSite workarea, staging area, or edition. Of these three, workarea data is the only type
that can be deployed using any of the three types of update (base, delta, or standalone). When
deploying staging area or edition data, use a base update if you plan subsequent delta table generation,
or use a standalone update if you do not need to track the table’s relationship to other tables. The
following table shows which data sources are supported for each type of update:

Supported TeamSite Source Areas for Different Types of Update

Update Type
Base Delta Standalone

TeamSite Source
Area

Workarea Supported Supported Supported
Staging Area Supported Not Supported Supported
Edition Supported Not Supported Supported
28 DataDeploy Administration Guide

Deployment Scenarios
Data Destinations

When you begin deployment, DataDeploy extracts information from the source that you specify and
organizes this information internally as tuples.Tuples can then be deployed into a specified destination
using selection and formatting rules defined in your DataDeploy configuration file(s).

All TeamSite tuples contain the following metadata:

• Exactly one path element, which is the area relative path name of the file associated with the
tuple’s key-value pair(s).

• One or more key-value pairs. The key is the name (also known as the class) of the extended
attribute. For example, News-Section is the key of the extended attribute News-
Section:Sports. The value is the data value for a tuple’s key—Sports, in this example.

• Exactly one state element, which describes the status of the tuple. Possible values are Original,
New, Modified, and NotPresent. See “Data Destinations” on page 29 for details about the state
element’s values.

Tuples are deployed in different ways, depending on the organizational structure, or schema.
DataDeploy deploys data to databases using three different organizational structures:

• Narrow tuples (which result in narrow or wide tables when the tuples are deployed to a database;
any given record is mapped to a single narrow or wide table)

• Wide tuples (which result in wide tables when the tuples are deployed to a database; any given
record is mapped to a single wide table)

• User-defined database schemas (which result in multiple tables when deployed to a database; any
given data content record may be mapped to multiple tables)

For more information on tuples and the three different types, see Chapter 3, “Deployment Concepts.”

In a TeamSite-to-database deployment, the destination of data can be any stored in any database on a
DataDeploy server (in a three-tier system) or a database on an application server (on a two-tier
system).
29

Deployment Concepts
When the base table (representing Staging) is initially populated, all tuples (entries) will have the state
of Original. Over the life of the base table, after submits, new tuples are added in the table and these
tuples will have the state of New. If a particular tuple in a workarea is changed and submitted, and if
that tuple already exists in the base table, the tuple will have a state of Modified. See “Updating a
Base Table” on page 36 for an example and more details.

The tuples in standalone tables do not have a state.

In a delta table, the state is the tuple's status as viewed in TeamSite area 1 (most often the staging area)
relative to the tuple in TeamSite area 2 (most often a workarea). A delta table can have tuples states of
Original, New, Modified, or NotPresent. The following table shows the scenarios that can
cause these states:

Delta Table Tuple States

A delta table tuple
state of: Was caused by:

Original Merging delta data from another workarea into a base table through a base
update (such as when submitting the other workarea data to a staging area).

New Generating a new tuple through a delta update (such as when adding a new
extended attribute to a file in a workarea).

Modified Updating a delta table through a delta update.

NotPresent
Data existing in a base area but not in a workarea (such as when the data is
deleted from the workarea, or when data is newly added to the base area from
a different workarea).
30 DataDeploy Administration Guide

Deployment Scenarios
Base Table Format: Narrow Tuples

By default, deploying narrow tuples creates a base table in a database containing columns for Path,
Key, Value, and State. For example:

Narrow Tuple Default Base Table

Path Key Value State
docroot/news/front.html News-Section Sports Original
docroot/news/front.html Locale SF Original

Key-Value List for
docroot/news/front.html:

Narrow
Database
Table:

News-Section=Sports, Locale=SF

Tuple 1 (Narrow)

path = docroot/news/front.html
key = News-Section
value = Sports
state = Original

Tuple 2 (Narrow)

path = docroot/news/front.html
key = Locale
value = SF
state = Original
31

Deployment Concepts
Base Table Format: Wide Tuples

By default, wide tuples deploy into wide tables, in which key values from the tuple are placed in
separate columns. The end result is a table in which a single file record contains individual key value
columns. For example:

Wide Tuple Default Base Table

It is also possible to deploy narrow tuples into a wide table by configuring DataDeploy to use wide
tuples. When you do, the tuples are deployed to a wide table by default. See “Sample TeamSite-to-
Database Configuration File” on page 109 for guidelines about specifying wide versus narrow tuples.

File News-Section Locale0 Locale1 State

docroot/news/front.html Sports SF Oakland Original

Key-Value List for
docroot/news/front.html:

Wide
Database Table:

News-Section=Sports, Locale/0=SF,
Locale/1=Oakland

Tuple 1 (Wide)

path = docroot/news/front.html
News-Section = Sports
Locale/0 = SF
Locale/1 = Oakland
state = Original
32 DataDeploy Administration Guide

Deployment Scenarios
You can also deploy narrow tuples to a wide table by manually configuring a set of SQL commands in
the DataDeploy configuration file. These SQL commands would then execute automatically during
deployment. Detailed SQL commands are beyond the scope of this document; you should refer to
third party SQL documentation for more information about that topic.

Note: Table column names cannot contain reserved SQL characters such as dash (-), slash (/),
question mark (?), percent (%), and so forth.

Data Synchronization

On the database system, DataDeploy must keep a record of which delta tables are associated with
which base tables (assuming you are using automated deployment, known as DAS. This is necessary so
that delta tables from multiple workareas that are associated with a single base table from a staging
area will remain synchronized when changes from one workarea are submitted to the staging area.
This relationship is maintained by the tracker table residing in the same database as the base and delta
tables.

Deploying from TeamSite to a Database: Details

The most common sequence of events when deploying from TeamSite to a database is as follows:

1. Generating an initial base table of a staging area or edition.

2. Generating a delta table for each workarea associated with the staging area or edition from Item 1.

3. Configuring TeamSite to invoke DataDeploy so that the base table from Item 1 is automatically
updated whenever changes are about to be submitted to its corresponding staging area or edition
from a workarea.

This subsection describes these steps, which are part of automated deployment, known as DAS.
33

Deployment Concepts
Generating an Initial Base Table

Usually, the first action you will instruct DataDeploy to perform is the creation of an initial base table
for a staging area or an edition. The following example shows the creation of a base table BT1 from a
staging area SA1 on a TeamSite branch such as /default/main/branch1. The configuration file
for this deployment is shown in “Starting-State Base Table Configuration File” on page 155.

Note: In that file, the value of the attribute name in the path element is relative to the staging area
that is the source of the data being deployed. Based on the preceding conditions, the following
sequence of events occurs. Refer to the figure following this list for a keyed diagram of the
steps.

1. Invoke DataDeploy from the command line, specifying the deployment configuration file that
contains the preceding parameters. DataDeploy reads the configuration file and goes to SA1,
extracting all extended attribute data.

2. DataDeploy creates the Tracker Table (or updates it if it already exists) to track relationships
between base and delta tables.

3. Based on additional information in the configuration file, DataDeploy creates base table BT1 in the
destination database, populating it with the data from Step 1.

Generating an Initial Base Table

SA1

WA1

WA2

WA3

TeamSite DataDeploy Database

BT1

1 3

2

Tracker
Table
34 DataDeploy Administration Guide

Deployment Scenarios
Generating a Delta Table

After creating the initial base table, you will need to generate one or more delta tables based on the
workareas associated with the base table’s staging area. This example shows the creation of a delta
table DT1 from a workarea WA1. It assumes that a base table for SA1 has already been generated, and
that WA1 is a workarea of staging area SA1. Based on the preceding conditions, the following
sequence of events occurs. Refer to the figure following this list for a keyed diagram of the steps.

1. Invoke DataDeploy from the command line, specifying the deployment configuration file that
contains the preceding parameters. DataDeploy compares the extended attribute data in WA1
with the same data in SA1 to determine the tuple difference between the two areas.

2. DataDeploy updates the Tracker Table to record that DT1 is a child of BT1.

3. DataDeploy creates DT1, using the delta data it determined in Step 1. If there is no delta data, it
creates an empty delta table.

Generating a Delta Table

TeamSite DataDeploy Database

DT1

DT2

DT3

BT1

1
2

3

SA1

WA1

WA2

WA3

Tracker
Table
35

Deployment Concepts
Updating a Base Table

After creating the initial base and delta tables, you can configure TeamSite workflow to automatically
update a base table whenever changes in a workarea are about to be submitted to a staging area. This
example assumes the following:

• You plan to submit a file list (rather than the entire workarea) from workarea WA2 to a staging
area SA1.

• A base table BT1 already exists for staging area SA1.

• Delta tables DT1 through DT3 already exist for all workareas (WA1 through WA3) associated
with staging area SA1.

• A tracker table already exists to establish and track the relationships between the base and delta
tables.

Based on the preceding conditions, the following sequence of events occurs. Note that all of the
DataDeploy activity takes place before TeamSite submits the changes from WA2. Refer to the figure
following this list for a keyed diagram of the step.

Updating a Base Table

SA

WA1

WA2

WA3

DT1

DT2

DT3

BT1

Workflow
or DAS 1

1a

6

5
7

TeamSite DataDeploy Database

Tracker

3

4

2

36 DataDeploy Administration Guide

Deployment Scenarios
1. If the submission occurs as part of a TeamSite workflow job, the TeamSite workflow engine
obtains a list of files to be submitted from WA2 to SA1. If Database Auto-Synchronization (DAS) is
configured, as described in Chapter 8, “Automating Deployment with DAS,” DAS obtains the list
of files to be submitted. This list of files is then passed to DataDeploy (1a in the following figure).

2. DataDeploy compares the file list items in WA2 with the same items in SA1 to determine the tuple
differences between the two areas. These differences will be installed in BT1 in Step 5.

3. DataDeploy checks the tracker table to determine the children of BT1.

4. Original rows from BT1 are propagated to DT1 and DT3 (but not to DT2). This ensures that the
original rows in BT1 are not lost, but instead are stored as now-obsolete data in its child delta
tables.

5. DataDeploy updates BT1 with the data derived earlier in Step 2.

6. DataDeploy removes from DT2 all rows whose path and key values are identical to those being
submitted from WA2 to SA1. This ensures that items not being submitted from WA2 to SA1 are
retained in DT2.

7. The workflow engine completes the submission of the file list to SA1.
37

Deployment Concepts
Table Updates

Hypothetical table updates for a scenario fitting this model would proceed as follows. For simplicity,
the tables shown here have column headings identical to the tuple items Path, Key, Value, and State.
In most situations, the columns will have other names. Because the term “key” has a specific meaning
in many database languages, it is recommended that you do not use “key” as a column heading.

Sample Table Updates

1. In their starting state, all tables are synchronized. Because there are no differences between SA1,
WA1, and WA2, there is no delta data. Therefore, DT1 and DT2 are empty. This is the starting
state that would exist if you completed the steps described in “Generating an Initial Base Table” on
page 34. The configuration file for generating this initial version of BT1 is shown in “Starting-State
Base Table Configuration File” on page 155.

2. In Event 1, workarea WA2 is changed locally with new data P2, K2, and V2, but the changes are
not submitted to staging area SA1. Because the changes are not submitted, you must execute a
delta update so that delta table DT2 reflects the new data in WA2. During this delta update, Data-
Deploy identifies the differences between SA1 and WA2 and records these differences (the delta
data) in DT2. This scenario is similar to the scenario in “Generating a Delta Table” on page 35.

Starting State1

BT1
Path Key Value State

P1 K1 V1 Orig

DT1
Path Key Value State

DT2
Path Key Value State

Event 12

BT1
Path Key Value State

P1 K1 V1 Orig

DT1
Path Key Value State

DT2
Path Key Value State

P2 K2 V2 New

Event 23

BT1
Path Key Value State

P1 K1 V1 Orig
P2 K2 V2 Orig

DT1
Path Key Value State

P2 K2 V2 NtPres

DT2
Path Key Value State
38 DataDeploy Administration Guide

Deployment Scenarios
However, in that scenario a delta table did not exist yet and had to be generated for the first time.
In the scenario shown here, the delta tables already exist and therefore only need to be updated.
The configuration file for this delta deployment is shown in “Event 1 Configuration File” on
page 156.

3. In Event 2, workarea WA2 (complete with its changes from Event 1) is submitted to staging area
SA1. In the configuration file for this deployment, Path and Key were named as the basis-for-com-
parison columns. Therefore, DataDeploy compares the Event 1 values of these columns in BT1
and DT2, sees that they are different, and determines that the row from DT2 Event 1 should
append rather than replace the data in BT1. DT1 has the new values shown here because WA1
now differs from SA1. If necessary, a Get Latest operation in WA1 would bring WA1 into sync
with SA1. (Had Event 1 DT2 contained a P1 K1 V2 row, it would have replaced rather than
appended the original BT1 row. In that case, the original BT1 row would have been propagated to
DT1, after which P1 K1 V2 would have replaced P1 K1 V1 in BT1. A subsequent Get Latest in
WA1 would bring WA1 into sync with SA1, and the data in DT1 would be deleted). DT2 is empty
because WA1 is once again in sync with SA1. This is the ending state that would exist if you com-
pleted the steps described in “Updating a Base Table” on page 36. The configuration file for this
deployment is shown in “Event 2 Configuration File” on page 157. Note: In that file, all of the
items in filelist are path-relative to area.

Composite Table Views

There are three ways that you can create table views:

• Through SQL commands that you execute manually to query the database after it is created. See
“Querying Tables” on page 197 for more information.

• Through SQL commands named in the user-action attribute of the DataDeploy configuration
file’s <sql> element. You run these commands by executing an SQL-specific deployment that you
specify through the command line options iwdd-op=do-sql and user-op=anyname. See
“Sample File Notes” on page 115 and “Invoking DataDeploy” on page 159 for more information.

• By setting the table-view attribute in the DataDeploy configuration file’s <database> section.
See “Sample File Notes” on page 115 for more information.
39

Deployment Concepts
The following composite views for workareas WA1 and WA2 would result from the scenarios
described in the previous sections. The composite for WA1 is the result of querying BT1 and DT1
using the SQL statements described in “Querying Tables” on page 197. Likewise, the composite for
WA2 is the result of querying BT1 and DT2.

Composite Table Views

Starting State

WA1
Path Key Value State

P1 K1 V1 Orig

WA2
Path Key Value State

P1 K1 V1 Orig

Event 1

WA1
Path Key Value State

P1 K1 V1 Orig

WA2
Path Key Value State

P1 K1 V1 Orig
P2 K2 V2 New

Event 2

WA1
Path Key Value State

P1 K1 V1 Orig

WA2
Path Key Value State

P1 K1 V1 Orig
P2 K2 V2 Orig
40 DataDeploy Administration Guide

Chapter 4

Data Organization

This chapter contains the following sections:

• Overview

• Deploying Data with Narrow Tuples

• Deploying Data with Wide Tuples

• Deploying Data with User-Defined Database Schemas: Overview

• Deploying Data with User-Defined Database Schemas: Architectural Details

• iwsyncdb.ipl Support for User-Defined Database Schemas

• Deploying Data with User-Defined Database Schemas: Partial Support of Metadata Deployment

• Other Data Organization Issues

Overview

DataDeploy’s main purpose is to transfer:

• File metadata (also called extended attributes).

• XML data.

• TeamSite Templating data content records (which are special XML files).

You can create file metadata by using:

• The iwextattr command line tool.

• The File > Set Metadata command in the TeamSite GUI (this menu item does not appear by
default).

• A workflow instance, or job, as a part of a <cgitask element>.

For more information, see TeamSite Command-Line Tools and the TeamSite Administration Guide.
41

Data Organization
When you begin deployment, DataDeploy extracts information from the source that you specify and
organizes this information internally as tuples.Tuples can then be deployed into a specified destination
using selection and formatting rules defined in your DataDeploy configuration file(s).

All TeamSite tuples contain the following metadata:

• Exactly one path element, which is the area relative path name of the file associated with the
tuple’s key-value pair(s).

• One or more key-value pairs. The key is the name (also known as the class) of the extended
attribute. For example, News-Section is the key of the extended attribute News-
Section:Sports. The value is the data value for a tuple’s key—Sports, in this example.

• Exactly one state element, which describes the status of the tuple. Possible values are Original,
New, Modified, and NotPresent. See “Data Destinations” on page 29 for details about the state
element’s values.

Tuples are deployed in different ways, depending on the organizational structure, or schema.
DataDeploy deploys data to databases using three different organizational structures:

• Narrow tuples (which result in narrow or wide tables when the tuples are deployed to a database;
any given record is mapped to a single row in a narrow or wide table)

• Wide tuples (which result in wide tables when the tuples are deployed to a database; any given
record is mapped to a single row in a wide table)

• User-defined database schemas (which result in multiple tables when deployed to a database; any
given record may be mapped to rows in multiple tables)

The following sections describe these three organizational structures.

Note: The following sections refer to iwsyncdb.ipl, which is a command-line tool that creates
DataDeploy configuration files by running a script called ddgen.ipl; these files determine
how databases organize data received from DataDeploy.

iwsyncdb.ipl is used to setup automated deployment, known as DAS. For a complete list
of the command options for this tool, see “iwsyncdb.ipl Usage” on page 189. To deploy data
content records or extended attributes automatically, by causing TeamSite events to trigger
the ddgen.ipl script, see Chapter 8, “Automating Deployment with DAS.”

Much of this chapter describes the role of iwsyncdb.ipl in implementing user-defined
database schemas.
42 DataDeploy Administration Guide

Deploying Data with Narrow Tuples
Deploying Data with Narrow Tuples

Narrow tuples are not a common way to deploy data due to structural constraints. Narrow tuples
contain exactly one path, key, value, and state element. For example, the following figures show
DataDeploy’s internal representation of two narrow tuples. Tuple 1 is for the News-
Section:Sports extended attribute for the file docroot/news/front.html. Tuple 2 is for the
Locale:SF extended attribute for the same file. Note that because a narrow tuple can contain only
one key-value pair, DataDeploy must create multiple tuples (two in this case) if a file’s extended
attributes consist of more than one key-value pair.

Narrow Tuples

Note: You cannot deploy data content records using narrow tuples.

To manually deploy extended attributes with narrow tuples to a database:

1. Create and edit a DataDeploy configuration file; this file can have any name.

For information on creating a DataDeploy configuration file for TeamSite-to-database
deployment, see “Sample TeamSite-to-Database Configuration File” on page 109.

2. Run iwdd.ipl to deploy your data.

 For information on iwdd.ipl, see Chapter 6, “Invoking DataDeploy.”

Tuple 1

path = docroot/news/front.html
key = News-Section
value = Sports
state = Original

Tuple 2

path = docroot/news/front.html
key = Locale
value = SF
state = Original
43

Data Organization
The following figure illustrates this process:

Manual Deployment Process to a Database

* Note: If you were deploying a data content record, DataDeploy would extract the data content record from the TeamSite file
system.

You cannot automatically deploy narrow tuples with DAS. DAS only accepts wide tuples. See Chapter
8, “Automating Deployment with DAS,” for details about automating deployment.

DataDeploy
Runtime

• Reads DataDeploy
configuration file

• Extracts extended
attributes from
TeamSite file
system*

• Creates tables at
destination

• Populates tables
with data

Command Line
• User issues
iwdd.ipl
command

DataDeploy
configuration file

• Can have any
name

TeamSite file
system

2

1

3

4 Database
(RDBMS)

• Destination tables
44 DataDeploy Administration Guide

Deploying Data with Wide Tuples
Deploying Data with Wide Tuples

 You can deploy extended attributes, XML data, or data content records as wide tuples. If these tuples
are then sent to a database, the database will store them in wide tables. If the destination is an XML
file, the tuples are stored as tags and values.

Data content records must be deployed using either wide tuples or user-defined database schemas. By
default, wide tuples deploy into wide tables when sent to a database. Wide tuples contain exactly one
path element and one state element, and any number of key-value pairs. Thus, a file’s extended
attribute data can be represented in a single wide tuple even if the extended attributes consist of more
than one key-value pair. The following figure shows DataDeploy’s internal representation of a wide
tuple. The information shown here is the same as that shown in the previous example. The only
difference is that in this case, DataDeploy was configured to create a wide tuple.

Wide Tuple

In a wide tuple, DataDeploy eliminates the key = and value = labels for the key and value data,
instead using the format key = value for each key-value pair. This arrangement simplifies the
creation of a wide base table as described in “Base Table Format: Wide Tuples” on page 32.

Support for wide tuples requires that all extended attribute keys be unique. For example, a file cannot
have two keys named Locale. To satisfy this requirement, TeamSite uses a numeric suffix for key
names that would otherwise be unique. For example, if the file docroot/news/front.html has
two Locale keys with the values SF and Oakland, the keys are named Locale/0 and Locale/1.

Tuple 1

path = docroot/news/front.html
News-Section = Sports
Locale = SF
state = Original
45

Data Organization
The TeamSite GUI and metadata capture module automatically enforce this naming convention when
you create extended attributes for a file. The resulting wide tuple in this example is as follows:

Wide Tuple with Similar Locale Keys

To manually deploy extended attributes with narrow tuples to a database:

1. Create and edit a DataDeploy configuration file; this file can have any name.

For information on creating a DataDeploy configuration file for TeamSite-to-database
deployment, see “Sample TeamSite-to-Database Configuration File” on page 109.

2. Run iwdd.ipl to deploy your data.

 For information on iwdd.ipl, see Chapter 6, “Invoking DataDeploy.”

For an illustration of this process, see the figure on page 44.

The remainder of this section discusses deploying data content records automatically using DAS. The
discussion in this section is only an overview; its purpose is to provide a conceptual understanding of
automated wide tuple deployment of data content records so that you can contrast this method with
automated deployment of data content records with user-defined database schemas. For more
information about DAS, see Chapter 8, “Automating Deployment with DAS.”

Tuple 1

path = docroot/news/front.html
News-Section = Sports
Locale/0 = SF
Locale/1 = Oakland
state = Original
46 DataDeploy Administration Guide

Deploying Data with Wide Tuples
When using DAS, administrators create table structures by using the iwsyncdb.ipl command line
tool (iwsyncdb.ipl -initial or iwsyncdb.ipl -ddgen). When you specify a wide or
narrow table architecture, this command line tool creates table structures in the following way:

• iwsyncdb.ipl reads the data capture template, datacapture.cfg, that corresponds to each
data type in a workarea’s vpath.

• iwsyncdb.ipl reads the DataDeploy template configuration file, ddcfg.template, which is
located in the following path: dd-home/conf/ddcfg.template.

• iwsyncdb.ipl, as a result of this input, creates a DataDeploy configuration file for each data
type; this file is named data_type_dd.cfg, where data_type is a variable that represents the
data type's name.

• iwsyncdb.ipl generates a single table for the entire data capture template and maps each field in
the data content record to a single table column.

Note: In this context, data type refers to a directory in TeamSite Templating’s directory structure;
see page 50.

For replicant fields (a field that contains a repeating group of values), iwsyncdb.ipl creates n
number of columns, where n is a variable that represents the maximum number of occurrences for a
given replicant in a data type's data capture template. When a data capture template contains many
replicant fields, user-defined database schemas may offer a better procedure for deploying your data.

The following figure represents the architectural model for using DAS to create DataDeploy
configuration files for data content records using wide tuples:
47

Data Organization
Deployment Using Wide or Narrow Tuples

The following sections describe the architectural model for the deployment of data content records to
user-defined database schemas. When using DAS, DataDeploy will use the model in the previous
figure if you choose not to use user-defined database schemas.

ddgen.ipl script

• Reads
datacapture.cfg
for each data type

• Reads
ddcfg.template

• Creates
DataDeploy
configuration files
based on
datacapture.cfg
and
ddcfg.template

Command Line
• User issues
iwsyncdb.ipl
-initial
command

ddcfg.template file
• Used as base

format for
DataDeploy
configuration files
generated by
ddgen.ipl

DataDeploy
configuration file

X_dd.cfg

datacapture.cfg for
data type X

datacapture.cfg for
data type Y

datacapture.cfg for
data type Z

DataDeploy
configuration file

Y_dd.cfg

DataDeploy
configuration file

Z_dd.cfg

3

1

2

4

48 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Overview
Deploying Data to User-Defined Database Schemas: Overview

A schema is the organization or structure for a relational database, including the layout of tables and
columns. The primary objective of DataDeploy is to allow users to map their data content records to
multiple user-defined database schemas. This feature is backward compatible with earlier versions of
DataDeploy.

Prior to the 5.0 release, DataDeploy deployed a data content record to a single row in a database
table. This deployment mapped every field (including replicant values) in a data content record to a
column. This architecture is known as wide table mapping. DataDeploy will continue to support this
approach; you can even use wide table mapping on some TeamSite branches and user-defined database
schemas on others.

However, user-defined database schemas give greater flexibility to users who require that database
content be distributed in normalized tables with relationships across tables. User-defined database
schemas allow you to map a given record to rows in multiple tables that you can define with foreign
and primary keys. The resultant tables have normalized data schemas. Normalized schemas make it
easy to understand the relationships between tables. Tables with normalized schemas are also easy to
query.

Users who wish to deploy data content records with many replicant fields (as described in this section)
may wish to use user-defined database schemas instead of wide table mapping. User-defined database
schemas offer more flexibility because you can map a single data content record to multiple tables,
avoiding problems related to physical limitations of databases.

Note: Data content records are part of TeamSite Templating. To deploy data content records using
user-defined database schemas, these records must be based on the Interwoven DTD or on
customized data capture template DTDs (DTDs specify the rules' framework for creating data
capture templates). These files generate the graphical user interface (GUI), or form, that
allows users to create data content records.

The remainder of this chapter focuses on implementing user-defined database schemas for deployment
of data content records. However, DataDeploy offers partial support for deploying TeamSite
extended attributes (metadata). See “Deploying Data to User-Defined Database Schemas: Support for
Metadata Deployment” on page 80.
49

Data Organization
It is possible to use user-defined database schemas manually. However, the examples in this section
assume you are deploying automatically, with DAS. For more information on DAS, see Chapter 8,
“Automating Deployment with DAS.”

A specific example will clarify the need for mapping to multiple tables. TeamSite Templating uses a
data storage hierarchy based on directories that contain data categories and types, as shown in the
following figure:

TeamSite Templating Directory Structure

Note: Data types are analogous to subcategories. For more information, see the TeamSite Templating
Developer’s Guide.

Workarea

templatedata

data_category_1

data_type_1

data_category_2

data_type_2

 . . .

. . .

datacapture.cfg data presentation

content_record_1

content_record_2
. . .

pres_template_1.tpl

pres_template_2.tpl
. . .

componentstutorials

output
50 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Overview
Data categories contain one or more datadata types. Suppose that Pat, an administrator at XYZ
Corporation, has used this hierarchy to create the following categories: Internet and Intranet.
Also suppose that the Internet category has seven types: auction, book, careers, medical,
periodic, pr, and yacht.

Suppose that Pat has also configured the following:

• She has created a data capture template—an XML file called datacapture.cfg—and has
inserted it into the book directory. (Each data type must have its own data capture template.)

• She has configured this data capture template so that it will generate a form containing various
fields that a user must complete or select.

• She has created a replicant element in the data capture template corresponding to the book type;
this element will create a button in the data content form. Content Contributors must complete
this form prior to submitting a data content record. In this example, Pat has used the replicant
element to create a Reviewers button that a Content Contributor clicks each time he wishes to
specify an additional reviewer.

• She has configured the data capture template so that a user can specify up to 10 reviewers.

• Each reviewer element has the following subelements: Name, E-Mail, and Comments.

Note: Pat would need to perform additional configuration to set up TeamSite Templating and
DataDeploy, but that configuration is not relevant to this example.

Prior to the DataDeploy 5.0 release, DataDeploy used wide table mapping for deployment of data
content records. Under that architecture, when an administrator created tables in a database using
DAS (by using the command-line tool iwsyncdb.ipl -initial or iwsyncdb.ipl -ddgen),
the table headings in the destination relational database connected to DataDeploy would have looked
like this:

The ellipses (...) in the column headings indicate that DataDeploy would create additional column
headings for each replicant field, up to the maximum number of fields indicated in the data capture
template. In this example, Pat indicated a maximum of 10 fields for the Reviewers replicant by giving
the max attribute a value of 10.

Path Author ISBN Publisher Title Name0..
. E-Mail0... Comments0... State
51

Data Organization
Therefore, each Reviewers' subelement would contain 10 headings:

• Name0-Name9

• E-Mail0-E-Mail9

• Comments0-Comments9

Under the wide table architecture, when Content Contributors at XYZ Corporation submitted a data
content record with replicant information, DataDeploy would have sent the data content record to a
wide table in a database. For the first data content record, created by Chris, DataDeploy would have
created the following columns:

Note: datacapture.cfg determines the column-heading names.

Assume another user at XYZ Corporation, Don, submitted a second data content record to the same
data type, book. Assume also that he did not specify any reviewers. After he submitted the data
content record, DataDeploy added a new row in the previous table. DataDeploy then inserted the
Path information and the State information in the appropriate columns. DataDeploy also inserted
information that Don typed or selected in the data content record, as in the following example:

Path Author ISBN Publisher Title Name0..
. E-Mail0... Comments0... State

mypath
0

William
Faulkner

1234-56 Software
Inc.

Using
Data

Chris chris@
xyz.com

This book
describes...

original

Path Author ISBN Publisher Title Name0..
. E-Mail0... Comments0... State

mypath
0

William
Faulkner

1234-56 Software
Inc.

Using
Data

Chris chris@
xyz.com

This book
describes...

original

mypath
1

Harper
Lee

1256-89 Software
Inc.

Using
Tuples

original
52 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
Such data structures, created by mapping data to wide tables, present the following challenges:

• Tables can become so wide that they violate database limits, causing deployments to fail.

• When a data content record is deployed into a database schema defined by a third-party application
server, an administrator may need to use native database techniques (such as stored procedures or
triggers) to transform data from the wide table model into the required schema.

• Some key-value pairs will have no values.

• Data stored in such tables is not normalized. If users at XYZ Corporation create additional data
content records using the wide table architecture, administrators will only be able to assume that
the Path column contains unique information.

As a result, DataDeploy enables users to map their data content records to multiple tables, using user-
defined database schemas schemas. This architecture allows administrators to normalize data. The
following tables show a normalized data structure for the previous example:

Deploying Data to User-Defined Database Schemas:
Architectural Details

This section describes:

• Creating database tables with user-defined database schemas.

• Examples of how to format new configuration files that implement user-defined database schemas.

• Guidelines on coding new configuration files.

Path Author ISBN Publisher Title State

mypath0 Faulkner 1234-56 Software Inc. Using Data original

mypath1 Harper Lee 1256-89 Software Inc. Using Tuples original

Name0... E-Mail0... Comments0... ISBN

Chris chris@soft.com This book
describes...

1234-56
53

Data Organization
Creating Database Tables with User-Defined Database Schemas

The following files are used to map DCRs to database schemas:
• dbschema.cfg

• ddcfg_uds.template

Note: You should not create these files if you will not use user-defined database schemas.

The dbschema.cfg file must be defined once for each data type. This file allows administrators to
specify the mapping of fields from data content records into custom-defined groups of columns, using
the <groups> element. These groups are analogous to tables, in database terminology, and are
treated as tables by DataDeploy.

In addition to the dbschema.cfg file, the DataDeploy architecture uses a DataDeploy template
configuration file, called ddcfg_uds.template, which defines a skeletal configuration for
automating deployment through DAS in conjunction with user-defined database schemas.

In summary, iwsyncdb.ipl -initial or iwsyncdb.ipl -ddgen requires the following files
files for a wide table deployment or for a deployment with user-defined database schemas:

iwsyncdb.ipl -initial or iwsyncdb -ddgen will check for the presence of the required files
and, depending on what files are present, will do one of the following:

• It will create a data_type_dd.cfg file that will result in the creation of wide tables. The path of
this file will be:
area/templatedata/data_category/data_type/data_type_dd.cfg.

Deployment Using Wide Tuples Deployment with User-Defined Database
Schemas

area/templatedata/data_category/
data_type/datacapture.cfg

area/templatedata/data_category/
data_type/datacapture.cfg

dd-home/conf/ddcfg.template dd-home/conf/ddcfg_uds.template
or
dd-home/conf/
ddcfg_uds_custome.template if you are
deploying custom DCRs.
area/templatedata/data_category/
data_type/dbschema.cfg
54 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
• Or it will create a DataDeploy configuration file (data_type_dd.cfg) that will result in the
creation of user-defined tables. The path of this file will be:
area/templatedata/data_category/data_type/data_type_dd.cfg.

• Or it will return an error.

The following figure illustrates the deployment of data content records using the architecture for
user-defined database schemas:
55

Data Organization
Deployment Process for Data Content Records Using User-Defined Database Schemas

ddgen.ipl script

• Reads datacapture.cfg for
each data type

• Reads dbschema.cfg for each
data type and checks that
consistency rules are not
violated

• Reads ddcfg_uds.template (or
ddcfg_uds_custom.template
file if deploying custome
DCRs)

• Creates DataDeploy
configuration files based on
two input files and one
template file

Command Line
• User uses iwsyncdb.ipl

-initial (or -ddgen)
command

ddcfg_uds.template file (or
ddcfg_uds_custom.template file if

deploying custom DCRs)
• Used as base format for DataDeploy

configuration files generated by
ddgen.ipl

3

1

2

4

DataDeploy configuration
file X_dd.cfg

dbschema.cfg for
data type X

dbschema.cfg for
data type Y

DataDeploy configuration
file Y_dd.cfg

datacapture.cfg for
data type X

datacapture.cfg for
data type Y
56 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
 Note: The primary difference between the basic DataDeploy configuration template file and
DataDeploy configuration template files for user-defined schemas is that the ones for user-
defined schemas do not use the <select> and <update> elements. Instead, they employ a
more flexible syntax that has elements in the dbschema.cfg file that allow administrators to
define primary keys and foreign keys, in addition to columns and tables.

The DTD of the dbschema.cfg file is as follows:

<!ELEMENT dbschema (group)+ >
<!ELEMENT group (attrmap, keys, create-sql?, exists-sql?) >
<!ATTLIST group name CDATA #REQUIRED
 root-group (yes|no) "yes"
 table CDATA #IMPLIED
 base-table CDATA #IMPLIED >
<!ELEMENT attrmap (column)+ >
<!ELEMENT column (EMPTY)>
<!ATTLIST column name CDATA #REQUIRED
 data-type CDATA #REQUIRED
 value-from-field CDATA #REQUIRED
 data-format CDATA #IMPLIED
 is-replicant (yes | no) "no"
 allows-null (yes | no) "no" >
<!ELEMENT keys (primary-key, foreign-key*) >
<!ELEMENT primary-key (key-column+) >
<!ELEMENT key-column (EMPTY)>
<!ATTLIST key-column name CDATA #REQUIRED>
<!ELEMENT foreign-key (column-pair+) >
<!ATTLIST foreign-key parent-group CDATA #REQUIRED >
<!ELEMENT column-pair (EMPTY) >
<!ATTLIST column-pair parent-column CDATA #REQUIRED
 child-column CDATA #REQUIRED >
<!ELEMENT create-sql (#PCDATA) >
<!ELEMENT exists-sql (#PCDATA) >
57

Data Organization
The meaning of several elements defined in this DTD follows:

• <dbschema> element defines the start of a schema mapping section.

• <group> element defines the unit of grouping for a set of fields that will be stored in a single
table. The ddgen.ipl script (which is run when an administrator uses the iwsyncdb.ipl -
initial or iwsyncdb.ipl -ddgen command) uses the name attribute of the group to form
part of the base and delta table names in the database.

When using DAS to deploy data content records, the name attribute of the group becomes part of
the base and delta table names. The root-group attribute indicates whether the group is the root
of the group hierarchy. The hierarchy of groups for a particular data content record must have a
single root.

• <attrmap> element defines the area in which the user specifies what fields in a data content
record are mapped to which database columns in the table corresponding to the containing group.

• <keys> element allows the user to define primary keys by using the <primary-key> element
and foreign keys by using the <foreign-key> element.

• <create-sql> and <exists-sql> elements define the SQL code needed to generate the table
definition for each group and check for the existence of the table in the database. These elements
are optional. If these element are not specified, DataDeploy generates the CREATE TABLE
statement dynamically from the <attrmap> information and uses database vendor-specific SQL
statements to check for the existence of a table.

Rules for Implementing User-Defined Database Schemas

This subsection describes:

• General rules for deploying with user-defined database schemas

• Consistency rules for dbschema.cfg

General Rules for Deploying with User-Defined Database Schemas

To use user-defined database schemas, the following rules apply:

• You can only deploy data content records and TeamSite extended attributes. In other words, the
<source> element in a DataDeploy configuration file must contain either <teamsite-
templating-records> or the <teamsite-extended-attributes> element.
58 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
• Data category names, data type names, branch names and workarea names cannot contain two
consecutive underscores (__).

• If a deployment contains the <dbschema> element, the length of column names specified in the
dbschema.cfg file for the data type must be less than or equal to what is allowed by your
database vendor. DataDeploy will not map long column names to internally generated identifiers
that comply with database column name length limitation.

• The <database> element’s table-view and clear-table attribute values have no effect
when the <dbschema> element is in a DataDeploy configuration file.

• TeamSite Templating must be installed.

• You must use the i-net UNA™ 3.05 JDBC driver to deploy data content records to a Microsoft
SQL Server database. Deployment using the JDBC-ODBC bridge may not work properly.

Consistency Rules for dbschema.cfg

dbschema.cfg requires that you implement the following rules:

• Do not use duplicate column names within a <group>/<attrmap> element.

• Do not use duplicate group names within a <dbschema> element.

• If a column is designated as a primary key within a group, a <column> element for that key must
exist within that group’s <attrmap> element.

• If a column is designated as a foreign key:

– Its group’s <attrmap> element must contain a <column> element whose name matches the
name of the child column.

– Its parent group must exist.

– Its parent group’s <attrmap> element must contain a column whose name matches the name
of the parent-group attribute of the child group’s <foreign-key>.

• Data-type attributes must match for columns that are specified as foreign keys. In other words, a
foreign key must have the same data type (for example, varchar) as its parent key.

• A column that is defined as a primary key cannot contain null values.

• Do not use user-defined database schemas for database sources; only use user-defined database
schemas for database destinations. In other words, only use the <dbschema> element inside a
<database> element when the <database> element is inside a <destinations> element.
59

Data Organization
• Do not use narrow tuples. The options attribute for the <teamsite-templating-records>
or <teamsite-extended-attributes> element inside the <source> element must be set to
wide.

• If the update-type attribute in the <database> element is set to delta, each <group>
element inside the <dbschema> element must have a base-table attribute.

• Specify a primary key for all non-leaf groups in the dbschema.cfg file. A group becomes a leaf
group if its name is not used inside any part of the <parent-group> element.

• Do not use the <select> and <update> elements inside a <database> element if the
<database> element contains a <dbschema> element. On the other hand, if a <database>
element does not contain a <dbschema> element, <database> must contain <select> and
<update> elements.

• If an <attrmap> element inside a <group> element has more than one <column> definition
whose value-from-field attribute is set to a replicant field, the value for the specified value-
from-field must have the same root element. For example, the Treatment and Drug fields in
the following example must have the same root element (Treatment List):

<group name="drug_list">
 <attrmap>
 <column name="Treatment" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Treatment"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease " />
 <column name="Drug" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Drug List/[0-4]/Drug"
 is-replicant="yes"/>
 </attrmap>

</group>

• Do not use the syntax that appears similar to regular expressions in the value-from-field
attribute values (for example, Treatment List/[0-3]/Drug List/[0-4]/Drug) unless
you are specifying a replicant field. Use this syntax only for replicant fields to indicate the
maximum number of replicants for a given node in the XML tree. It cannot be used for any other
purpose.
60 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
Sample Mappings of dbschema.cfg

A sample mapping of a dbschema.cfg file follows:

<dbschema>
 <group name = "group1" root-group="yes">
 <attrmap>
 <column name="col1" data-type="varchar(20)"
 value-from-item="item-name1"/>
 <column name="col2" data-type="varchar(20)"
 value-from-item="item-name2"/>

 </attrmap>

 <keys>
 <primary-key>
 <key-column name="col1"/>
 </primary-key>
 </keys>
 </group>

 <group name="group2" root-group="no">
 <attrmap>
 <column name="group2col1" data-type="varchar(20)"
 value-from-item="item-name3"
 is-replicant="yes"
 allows-null="no"/>

 </attrmap>

 <keys>
 <primary-key>
 <key-column name="group2col1" />
 </primary-key>
 <foreign-key parent-group = "group1" >
 <column-pair parent-column="col1"
 child-column =group2col" />
 </foreign-key>
 <keys>
 </group>
</dbschema>
61

Data Organization
A sample mapping of the dbschema.cfg file for the medical data capture example template that is
distributed with TeamSite Templating would look like this:

<dbschema>
 <group name="medical_master" root-group="yes">
 <attrmap>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease" allows-null="no"/>
 <column name="LatinName" data-type="varchar(100)"
 value-from-field="Latin
 Name" allows-null="no"/>
 <column name="Type" data-type="varchar(15)"
 value-from-field="Type"
 allows-null="no"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Disease" />
 </primary-key>
 </keys>
 </group>

 <group name="vector_list" root-group="no">
 <attrmap>
 <column name="Vector" data-type="varchar(40)"
 value-from-field="Vector List/[0-5]/Vector" is-replicant=
 "yes" />

 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Vector"/>
 <key-column name=" Disease"/>
 </primary-key>
62 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
 <foreign-key parent-group=medical_master ">
 <column-pair parent-column="Disease"
 child-column="Disease" />
 </foreign-key>
 </keys>
 </group>

 <group name="symptom_list" root-group="no">
 <attrmap>
 <column name="Symptom" data-type="varchar(100)"
 value-from-field="Symptom List/[0-5]/Symptom"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Symptom"/>
 <key-column name=" Disease"/>
 </primary-key>
 <foreign-key parent-group="medical_master">
 <column-pair parent-column=
 "Disease" child-column="Disease"/>
 </foreign-key>
 </keys>
 </group>

 <group name="prognosis_list" root-group="no">
 <attrmap>
 <column name="Prognosis" data-type="varchar(100)"
 value-from-field="Prognosis List/[0-3]/Prognosis"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 </attrmap>
 <keys>
 <primary-key>
 <key-column name="Prognosis"/>
63

Data Organization
 <key-column name=" Disease"/>
 </primary-key>
 <foreign-key parent-group="medical_master">
 <column-pair parent-column="Disease" child-column=
 "Disease" />
 </foreign-key>
 </keys>
 </group>

 <group name="Treatment_list" root-group="no">
 <attrmap>
 <column name="Treatment" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Treatment"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 </attrmap>

 <keys>
 <primary-key>
 <column-key name="Treatment"/>
 <column-key name="Disease" />
 </primary-key>
 <foreign-key parent-group="medical_master">
 <column-pair parent-column="Disease" child-column=
 "Disease" />
 </foreign-key>
 </keys>
 </group>

 <group name="drug_list" root-group="no">
 <attrmap>
 <column name="Treatment" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Treatment"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 <column name="Drug" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Drug List/[0-4]/Drug"
 is-replicant="yes"/>
 </attrmap>
64 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
 <keys>
 <primary-key>
 <key-column name="Drug" />
 <key-column name="Disease"/>
 <key-column name="Treatment" />
 </primary-key>
 <foreign-key parent-group="Treatment_list" />
 <column-pair parent-column="Disease"
 child-column="Disease" />
 <column-pair parent-column=" Treatment"
 child-column=" Treatment" />
 </foreign-key>
 </keys>
 </group>
</dbschema>

The following figure shows a symbolic representation of the table relationships generated by the
previous code:
65

Data Organization

Symbolic Representation of Table Relationships

Note: N is a variable representing the number of rows in a table that contain a given data type. A
1-to-N relationship represents a one-to-many relationship.

Prognosis
List

Medical Master Vector
List

Treatment
List

Drug
List

Symptom
List

1

1

1

N

N

N

NN 1 1
66 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
Sample of basearea Deployment Section

A sample of the basearea deployment section in the generated DataDeploy configuration file
(data_type_dd.cfg) follows:

<deployment name="basearea">
 <source>
 <!-- Pull data tuples from TeamSite Templating DCR's -->
 <teamsite-templating-records
 options = "wide"
 area = "\$mybasearea">
 <path name = "\$mytemplatepath"
 visit-directory = "deep" />
 </teamsite-templating-records>
 </source>
 <destinations>
 <!—Oracle 8i -->
 <database db = "hostname:1524:ORCL"
 user = "system"
 password = "manager"
 vendor = "oracle"
update-type = "base"
state-field = "state">

<dbschema>
 <group name="medical_master"
 table= "\$mybasetablenameprefix^__medical_master__\
 $mybasetablenamesuffix" root-group="yes">
 <attrmap>
 <column name="Path" data-type="varchar(255)"
 value-from-field="path"/>
 <column name="state" data-type="varchar(25)"
 value-from-field="state"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 <column name="LatinName" data-type="varchar(100)"
 value-from-field="Latin Name"/>
 <column name="Type" data-type="varchar(15)"
 value-from-field="Type"/>
 </attrmap>
67

Data Organization
 <keys>
 <primary-key>
 <key-column name="Disease" />
 </primary-key>
 </keys>

 <create-sql>
 CREATE TABLE
\$mybasetablenameprefix^__medical_master__\$mybasetablenamesuffix
 (
 path varchar(255) NOT NULL,
 state varchar(255) NOT NULL,
 disease varchar(100) NOT NULL,
 latinname varchar(100),
 type varchar(15),
 CONSTRAINT
\$mybasetablenameprefix^__medical_master__\$mybasetablenamesuffix_key
PRIMARY KEY(disease)
)
 </create-sql>

 <exists-sql>
 SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME =
'\$mybasetablenameprefix^__medical_master__\$mybasetablenamesuffix'
 </exists-sql>

 </group>

 <group name="vector_list"
 table="\$mybasetablenameprefix^__vector_list__\
 $mybasetablenamesuffix" root-group="no">
 <attrmap>
 <column name="Vector" data-type="varchar(40)"
 value-from-field="Vector List/[0-5]/Vector" is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 <column name="Path" data-type="varchar(255)"
 value-from-field="path"/>
 </attrmap>
68 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
 <keys>
 <primary-key>
 <key-column> name="Vector"/>
 <key-column> name="Disease"/>
 </primary-key>

 <foreign-key parent-group="medical_master">
 <column-pair parent-column="Disease"
 child-column="Disease"/>
 </foreign-key>
 </keys>

 <create-sql>

 CREATE TABLE
\$mybasetablenameprefix^__vector_list__\$mybasetablenamesuffix
 (
 disease varchar(100) NOT NULL,
 vector varchar(40) NOT NULL,
 path varchar(255) NOT NULL,
 CONSTRAINT
\$mybasetablenameprefix^__vector_list__\$mybasetablenamesuffix_key
 PRIMARY KEY(disease,vector)
)
 </create-sql>

 <exists-sql>
 SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME =
 '\$mybasetablenameprefix^__vector_list__\$mybasetablenamesuffix'
 </exists-sql>

 </group>

 <group name="symptom_list"
 table="\$mybasetablenameprefix^__symptom_list__\
 $mybasetablenamesuffix" root-group="no">
 <attrmap>
 <column name="Symptom" data-type="varchar(100)"
 value-from-field="Symptom List/[0-5]/Symptom"
 is-replicant="yes"/>
69

Data Organization
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 <column name="Path" data-type="varchar(255)"
 value-from-field="Path"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Symptom"/>
 <key-column name="Disease"/>
 </primary-key>
 <foreign-key parent-group="medical_master">
 <column-pair parent-column="Disease
 child-column="Disease />
 </foreign-key>
 </keys>

 <create-sql>
 CREATE TABLE
\$mybasetablenameprefix^__symptom_list__\$mybasetablenamesuffix
 (
 disease varchar(100) NOT NULL,
 symptom varchar(40) NOT NULL,
 path varchar(255) NOT NULL,
 CONSTRAINT
\$mybasetablenameprefix^__symptom_list__\$mybasetablenamesuffix_key
PRIMARY KEY(disease,symptom)
)

 </create-sql>

 <exists-sql>
 SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME =
 '\$mybasetablenameprefix^__symptom_list__\$mybasetablenamesuffix'
 </exists-sql>

 </group>

 <group name="prognosis_list"
 table="\$mybasetablenameprefix^__prognosis_list__\
70 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
 $mybasetablenamesuffix" root-group="no">
 <attrmap>
 <column name="Prognosis" data-type="varchar(100)"
 value-from-field="Prognosis List/[0-3]/Prognosis"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 <column name="Path" data-type="varchar(255)"
 value-from-field="Path"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Prognosis"/>
 <key-column name="Disease"/>
 </primary-key>
 <foreign-key parent-group="medical_master">
 <column-pair parent-column="Disease
 child-column="Disease"/>
 </foreign-key>
 </keys>

 <create-sql>
 CREATE TABLE
\$mybasetablenameprefix^__prognosis_list__\$mybasetablenamesuffix
 (
 disease varchar(100) NOT NULL,
 prognosis varchar(40) NOT NULL,
 path varchar(255) NOT NULL,
 CONSTRAINT
\$mybasetablenameprefix^__prognosis_list__\$mybasetablenamesuffix_key
 PRIMARY KEY(disease,prognosis)
)
 </create-sql>

 <exists-sql>
 SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME =
 '\$mybasetablenameprefix^__prognosis_list__\$mybasetablenamesuffix'
 </exists-sql>
 </group>
71

Data Organization
 <group name="Treatment_list"
 table="\$mybasetablenameprefix^__treatment_list__\
 $mybasetablenamesuffix" root-group="no">
 <attrmap>
 <column name="Treatment" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Treatment"
 is-replicant="yes"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 <column name="Path" data-type="varchar(255)"
 value-from-field="Path"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Treatment" />
 <key-column> name="Disease"/>
 </primary-key>
 <foreign-key parent-group="medical_master" >
 <column-pair parent-column="Disease"
 child-column="Disease" />
 </foreign-key>
 </keys>
 <create-sql>
 CREATE TABLE
\$mybasetablenameprefix^__treatment_list__\$mybasetablenamesuffix
 (
 disease varchar(100) NOT NULL,
 treatment varchar(40) NOT NULL,
 path varchar(255) NOT NULL,
 CONSTRAINT
\$mybasetablenameprefix^__treatment_list__\$mybasetablenamesuffix_key
 PRIMARY KEY(disease,treatment)
)

 </create-sql>
 <exists-sql>
 SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME =
'\$mybasetablenameprefix^__treatment_list__\$mybasetablenamesuffix'
 </exists-sql>
72 DataDeploy Administration Guide

Deploying Data to User-Defined Database Schemas: Architectural Details
 </group>

 <group name="drug_list"
 table="\$mybasetablenameprefix^__drug_list__\
 $mybasetablenamesuffix" root-group="no">
 <attrmap>
 <column name="Treatment" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Treatment"
 is-replicant="yes"/>
 <column name="Drug" data-type="varchar(100)"
 value-from-field="Treatment List/[0-3]/Drug List/[0-4]/Drug"
 is-replicant="yes"/>
 <column name="Path" data-type="varchar(255)"
 value-from-field="Path"/>
 <column name="Disease" data-type="varchar(100)"
 value-from-field="Disease"/>
 </attrmap>

 <keys>
 <primary-key>
 <key-column name="Drug" />
 <key-column name="Treatment" />
 </primary-key>
 <foreign-key parent-group="Treatment_list">
 <column-pair
 parent-column="Treatment"
 child-column="Treatment"/>
 <column-pair
 parent-column="Disease"
 child-column="Disease"/>
 </foreign-key>
 </keys>
 <create-sql>
 CREATE TABLE
\$mybasetablenameprefix^__drug_list__\$mybasetablenamesuffix
 (
 drug varchar(100) NOT NULL,
 treatment varchar(40) NOT NULL,
 Path varchar(255) NOT NULL,
 CONSTRAINT
\$mybasetablenameprefix^__drug_list__\$mybasetablenamesuffix_key PRIMARY
73

Data Organization
KEY(drug,treatment)
)
 </create-sql>
 <exists-sql>
 SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME =
'\$mybasetablenameprefix^__drug_list__\$mybasetablenamesuffix'
 </exists-sql>
 </group>

</dbschema>

iwsyncdb.ipl Support for User-Defined Database Schemas

The following subsections describe:

• Creating dbschema.cfg files.

• Validating dbschema.cfg files.

Note: The command options described in this section do not support creation or validation of a
dbschema.cfg file for a metadata capture configuration file. See “Deploying Data to User-
Defined Database Schemas: Support for Metadata Deployment” on page 80 if you wish to
deploy TeamSite extended attributes (metadata).

Creating dbschema.cfg Files

Use the following command to create dbschema.cfg files for all data types in a given workarea or,
optionally, for a particular data type in a particular data category:

iwsyncdb.ipl -dbschemagen vpath [dcr-type] [-force]

Details are as follows:

• This command generates dbschema.cfg files for each data type configured in iw-home/
local/config/templating.cfg under the specified workarea vpath.

• Data types that are configured to use custom DTDs are skipped.

• Data types that do not have a datacapture.cfg file are skipped.
74 DataDeploy Administration Guide

iwsyncdb.ipl Support for User-Defined Database Schemas
• The optional dcr-type setting causes the creation of a dbschema.cfg file for a single data type
(rather than all data types in vpath).

• The -force option overwrites any existing dbschema.cfg files.

Validating dbschema.cfg Files

You can validate dbschema.cfg files by using:

• iwsyncdb.ipl -ddgen or -initial

• iwsyncdb.ipl -validate

Note: By default, iwsyncdb.ipl -validate is called as part of both the -ddgen and -initial
options in iwsyncdb.ipl. Validation errors are recorded in a file called
iwvalidate_dbschema.log in the DataDeploy log directory.

Validation of dbschema.cfg Files Using iwsyncdb.ipl -ddgen or -initial

Both of these options ensure that dbschema.cfg files are properly configured. These options
perform this validation by calling iwsyncdb.ipl -validate. If iwsyncdb.ipl -validate
detects invalid dbschema.cfg files, the process will be terminated and the errors will be recorded in
the iwvalidate_dbschema.log file in the DataDeploy log directory. If a dbschema.cfg file is
missing, this log file will not record this as an error.

Validation of dbschema.cfg Files Using iwsyncdb.ipl -validate

You can perform validation of dbschema.cfg files for a:

• vpath or a particular data type under vpath.

• Or for a file specified with a complete path name.

Validating by Using vpath

The syntax for performing validation of files in a vpath is as follows:

iwsyncdb.ipl -validate vpath [dcr-type]

This command validates the dbschema.cfg files for data types configured in iw-home/local/
config/templating.cfg under the specified workarea vpath. The optional dcr-type
argument specifies that the iwsyncdb.ipl command will validate a single data type's
75

Data Organization
dbschema.cfg file (rather than all data types' dbschema.cfg files under vpath). If a particular
data type does not have a dbschema.cfg file, that type is skipped and no errors are generated.

Validating by Using a Complete Path Name

The syntax for performing validation of a file specified by a complete path name is as follows:

iwsyncdb.ipl -validate dbschema_file_name

This command validates the specified dbschema_file_name. The dbschema_file_name
argument must specify a complete path to a file that contains the <dbschema> element.

Deploying Custom Data Content Records

You can deploy data content records (DCRs) that are based on custom DTDs into user-defined
database schemas.

Notes: Custom DCRs can only be deployed to databases. They cannot be deployed into databases that
use wide table format.

The following changes to DataDeploy configuration files enable this feature:

• Support for value-from-element and value-from-attribute attributes has been added to
the <column> element.

• Support for a custom attribute has been added to the <teamsite-templating-records>
element.
76 DataDeploy Administration Guide

Deploying Custom Data Content Records
The value-from-element and value-from-attribute Attributes

These attributes have been added to the <column> element in DataDeploy configuration files so that
you can specify whether a column maps to an element (node) or an attribute of the node.

To illustrate this, assume that the following data from a custom DCR is to be deployed to a user-
defined database schema:

<press-release>
<head>

<title>title1</title>
<byline author="Chris" location="location1"/>

</head>
<body>

<heading>heading1</heading>
<paragraph>para1></paragraph>

</body>
</press-release>

To map an element’s value to a column (for example, the value for <title>) the <column> element
in the DataDeploy configuration file would look like this:

<column name="title"
data-type="VARCHAR(100) "
value-from-element="press-release/0/head/0/title/0"/>

To map the value of an element’s named attribute to a column (for example, the value for the author
attribute), the <column> element in the DataDeploy configuration file would look like this:

 <column name="author"
data-type="VARCHAR(100) "
value-from-attribute="press-release/0/head/0/byline/0/author"/>

Note the /o/ succeeding each element name. Those are instance indicators that specify which instance
of the node’s value or attribute is mapped. You must specify the maximum number of instances
(replicants) for a given node element. Arbitrarily large values can be specified when the maximum
number of replicants allowed is unknown.
77

Data Organization
Using the same example custom DCR snippet as above, mapping values of replicant elements (in this
case, heading and paragraph) would look like this:

<column name="heading"
data-type="VARCHAR(100) "
value-from-element="press-release/0/body/0/heading/[0-5] "
is-replicant="yes"/>

To map the values of replicant element attributes:

<column name="paragraph"
data-type="VARCHAR(100) "
value-from-attribute="press-release/0/body/0/paragraph/[0-5] "
is-replicant="yes"/>

The dbschem.cfg file created for the PressRelease custom DTD example shipped with
TeamSite Templating would look like:

<dbschema>
<group name="pr_master" table="pr_master" root-group="yes">

<attrmap>
<column name="Path" data-type="varchar(255)" value-from-

field="path"/>
<column name="state" data-type="varchar(25)" value-from-

field="state"/>
<column name="title" data-type="varchar(100)" value-from-

element="press-release/0/head/0/title/0"/>
<column name="author" data-type="varchar(100)" value-from-

attribute="press-release/0/head/0/byline/0/author"/>
<column name="location" data-type="varchar(15)" value-from-

attribute="press-release/0/head/0/byline/0/location"/>
</attrmap>

<keys>
<primary-key>

<key-column name="title"/>
</primary-key>

</keys>

</group>
78 DataDeploy Administration Guide

Deploying Custom Data Content Records
<group name="pr_body" table="pr_body">
<attrmap>

<column name="heading" data-type="varchar(40)" value-from-
element="press-release/0/body/0/heading/[0-5]" is-replicant="yes"/>

<column name="paragraph" data-type="varchar(100)" value-from-
element="press-release/0/body/0/paragraph/[0-5]" is-replicant="yes"/>

<column name="title" data-type="varchar(100)" value-from-
element="press-release/0/head/0/title/0"/>

</attrmap>

<keys>
<primary-key>

<key-column name="title"/>
<key-column name="heading"/>
<key-column name="paragraph"/>

</primary-key>

<foreign-key parent-group="pr_master" ri-constraint-rule=" ON
DELETE CASCADE ">

<column-pair parent-column="title" child-column="title"/>
</foreign-key>

</keys>
</group>

</dbschema>

The custom Attribute

A custom attribute has been added to the <teamsite-templating-records> element. To
deploy custom DCRs, you must set the value of that attribute to yes.
79

Data Organization
Deploying Data to User-Defined Database Schemas: Support
for Metadata Deployment

You can deploy TeamSite metadata into a user-defined database schema in the following modes:

• Standalone

• DAS

Standalone Mode

Ensure that the update-type attribute in the <database> section of your DataDeploy
configuration file has the value of standalone. The update-type attribute has a default value of
standalone if you have not explicitly set the value of this attribute.

To deploy metadata with user-defined database schemas in standalone mode:

1. Generate a default dbschema.cfg file for a metadata datacapture.cfg file that is located at
iw-home/local/config/datacapture.cfg by using the following command:
iwsyncdb.ipl -mdcdbschemagen [-force]

This command generates a dbschema.cfg file in the following path: iw-home/local/
config/dbschema.cfg.

2. Insert the contents of the generated dbschema.cfg file into the <database> section of your
DataDeploy configuration file.

3. Deploy metadata by using the iwdd.ipl command. See “iwdd.ipl Command” on page 159 for full
details.

Note: Use iwsyncdb.ipl -mdcdbschemagen only for metadata datacapture.cfg files based
on an Interwoven DTD, datacapture4.5.dtd or later.

The iwsyncdb.ipl -dbschemagen command does not support generating a
dbschema.cfg file for a medata capture configuration file.
80 DataDeploy Administration Guide

Deploying Data from an External Data Source
DAS Mode

To deploy metadata with user-defined database schemas in DAS mode:

1. Generate a default dbschema.cfg file for a metadata datacapture.cfg file that is located at
iw-home/local/config/datacapture.cfg by using the following command:

iwsyncdb.ipl -mdcdbschemagen [-force]

2. Create an mdc_ddcfg_uds.template file in the dd-home/conf directory.

3. Run iwsycdb.ipl -mdcddgen [-force].

An iw-home/local/config/mdc_dd.cfg file is created.

Deploying Data from an External Data Source

This section is intended for advanced users or by Interwoven Professional Services personnel. Persons
intending to implement the External Data Source feature must install Java Development Kit 1.1 or
greater and have good working knowledge of the following:

• Java programming

• Java Development Kit (JDK)

• Java Database Connectivity (JDBC)

DataDeploy supports the inclusion of dynamic (computed at transaction time) values and values from
external database objects in deployments. Such values can be used, for instance, to construct a
sequence column for each row in the table.

The External Data Source feature supports deployments with user-defined schemas only. The
External Data Source feature cannot be used with deployments to databases that use wide table
format. External Data Source can be used when the following are deployed in either standalone or
DAS mode:

• Metadata

• DCRs

• Custom DCRs
81

Data Organization
The External Data Source feature is implemented in the form of a programmatic interface. The
interface definition is as follows. Additionally, the Java class for the IWExternalDataSource
interface is installed in the dd-home/conf directory.

package com.interwoven.dd100.dd;

import java.sql.*;
import java.util.*;

public interface IWExternalDataSource
{
 public static final int kOpCodeInsert = 1;
 public static final int kOpCodeUpdate = 2;
 public static final int kOpCodeDelete = 3;
 public static final int kOpCodeQuery = 4;
public static final double kProtocolVersion10 = 1.0;

public abstract double GetProtocolVersion();
/*
Implementation of this method must return 1.0 or
kProtocolVersion10. If this method returns any other value or
null deployment will be terminated abnormally.
*/

public abstract String GetExternalValue(Connection conn,
String tableName,

String columnName, int opCode,
Hashtable tuple, boolean isReplicant);

 /*
 The main interface method that will be invoked by DataDeploy
 to get the value for a column that has been marked to have
 data generated/returned from an external source

Parameters:
 conn - database connection. This is not the same connection
 that DataDeploy uses to perform the deployment.

 tableName - name of the table that has the column to contain
 externally generated value
 columnName - name of the column for which value is to be

generated by the external source
 opCode - indicates type of operation that will be performed

by DD on the table
82 DataDeploy Administration Guide

Deploying Data from an External Data Source
 1 - insert
 2 - update
 3 - delete
 4 - query (SELECT)

 tuple - hashtable that contains the values for other columns.
column name is the lookup key.

 isReplicant - true if the column for which value requested is
mapped to a replicant field

 - false otherwise

 This function should always return the intended value for the
 column as a String. DataDeploy would perform appropriate
 conversion of the String depending on the target column's
 datatype.
 Important: Implementation of this method should take care of
 re-entrancy. This method may be invoked by DataDeploy
 multiple times for the same opcode. For example, when
 DataDeploy inserts a row into the database, there is a
 preparation stage and there is a second
 stage that performs actual insert. This method should return
 the same value in both the cases. One way of achieving that
 is to look at the "path" attribute value in the tuple
 object, in conjunction with the opCode value.

When this method is being called when DataDeploy needs to
 select the row, because the original value was supplied by
 this method, it needs to check the database to identify
 the value correctly and return it to DataDeploy.
 Note that any modifications to the key-value pairs in the
 tuple object aren't propagated or used by DataDeploy as it
 supplies only a copy of the tuple object rather than the
 object that it uses to perform the deployment.
 Similarly, the Connection object supplied to this method
 is not the same connection that DataDeploy uses to
 perform the deployment.
 For DAS deployments, the tableName value supplied to this
 method would be the 'mapped'value if the actual table name
 exceeded the length that the database supports. This method
 can query the IWOV_IDMAPS table to get the original name for
 the supplied mapped name.

 */
}

83

Data Organization
To implement the External Data Source feature, you must write a Java class that implements the
above interface (for example, both the abstract methods GetExternalValue() and
GetProtocolVersion().) See the comments interspersed throughout the definition above for the
syntax and semantics of these two methods.

DataDeploy loads the your Java class only once, even if that same class is being used to generate values
for multiple columns in various tables. It is the responsibility of the callout implementation to
determine, according to the parameters supplied to the GetExternalValue() method, which
values will be returned.

After you have implemented the Java class as described above, do the following:

1. Compile the Java class.

During this phase dd-home/lib/dd.jar must be included in the -classpath command line
option for the Java compiler, or it should be included in the CLASSPATH environment variable.

2. Unit test the implementation independent of DataDeploy.

3. Create a JAR file for the implementation and copy it to dd-home/lib directory

4. Edit dd-home/bin/iwdd.ipl to include the above JAR file in the datadeploy_jarfiles
variable in iwdd.ipl.

5. Add a <column> element that defines the column for the dynamic (or external) value to one of
the following files:

– The DataDeploy configuration file that will be used for deployments.

– The dbschema.cfg file if you want to use External Data Source with deployments that occur
in DAS mode.

Using the following example External Data Source interface, such a <column> element would
look like this:

<column name="column1" data-type="VARCHAR(100)" value-from-
callout="iwov:dd:java:com.interwoven.datadeploy.sample.IWDataDeploySample"/>

Note that iwov:dd:java is a prefix that must precede the class and package name, here represented
by com.interwoven.datadeploy.sample.IWDataDeploySample.
84 DataDeploy Administration Guide

Deploying Data from an External Data Source
Example Implementation of the External Data Source Interface

This example can also be found in dd-home/conf/IWDataDeploy.java.

/***
This is a sample implementation to demonstrate how DataDeploy

 can interact with a user-defined Java class to supply a value
 for a column during database deployment.

 This Java file should be compiled using JDK1.1 or later.
 CLASSPATH should include $dd-home/lib/dd.jar file. If you are
 using an Integrated Development Environment, refer to manuals
 of that product on how to set the CLASSPATH.

 Once the implementation compiles successfully, you must
 create a Java Archive for this class file and include the
 name of that archive in the CLASSPATH before invoking
 DataDeploy.

 Refer to IWExternalDataSource.java for interface description.

**/

package com.interwoven.datadeploy.sample;

/*
You must have $dd-home/lib/dd.jar in the CLASSPATH or it must be specified in the
-classpath argument to javac.
*/

//import the Interface definition for the Java Callout
import com.interwoven.dd100.dd.IWExternalDataSource;

//import other stuff needed
import java.sql.*;
import java.util.*;

public class IWDataDeploySample implements
com.interwoven.dd100.dd.IWExternalDataSource
{

 // we will use a random generator to generate unique values
85

Data Organization
 // for each DCR
 //that gets deployed
 private static Random fRandom = null;

 // we will use a hashtable to store the values with
 // 'tableName' value as the key
 // and TableData object as the value
 private static Hashtable fValues = null;

 //Constructor
 public IWDataDeploySample()
 {
 //nothing to do at this time
 }

 /*
 GetProtocolVersion

 Implementation of the interface method to establish handshake
 with DataDeploy
 */
 public double GetProtocolVersion()
 {
/*

 currently only supported interface protocol version is 1.0
 */
return com.interwoven.dd100.dd.IWExternalDataSource.kProtocolVersion10;

 }

 /*
 GetExternalValue

 Implementation of the interface method to supply values
 */

 public String GetExternalValue(Connection conn,
String tableName, String colName, int opCode,
 Hashtable tuple, boolean isReplicant)
 {
 String path = (String) tuple.get("path");

 //check our internal cache for any previously supplied
 //valuefor the given combination of tablename, colname
 //and path value
 String retVal =
86 DataDeploy Administration Guide

Deploying Data from an External Data Source
CheckCache4ExistingValue(tableName,colName,path);

 if (retVal == null){ //not in the cache
 //check the table itself. In case of an update we
 //have to supply the existing value
 retVal =
 CheckTable4ExistingValue(conn,tableName,colName,path);
 if (retVal == null || retVal.length() == 0){//no vaue in the target
table
 //generate a new value
 retVal = generateNewValue();
 }
 //add the newly generated value to our cache
 AddToCache(tableName,colName,path,retVal);
 }
 return retVal;
 }

 /*
 generateNewValue

 Generate a new value. We use a Random generator in this
 example. Alternatively the value could be coming from
 another source. For example from a SEQUENCE in the case of
 Oracle database server.
 */
 private String generateNewValue()
 {
 if (fRandom == null){
 fRandom = new Random();
 }
 Integer i = new Integer(fRandom.nextInt());
 return i.toString();
 }

 /*
 CheckCache4ExistingValue

 Check if we have already generated a value for the current
 combination of tablename, column name and path.
 */
 private String CheckCache4ExistingValue(String tableName,
 String colName, String path)
 {
 String result = null;
87

Data Organization

 if (fValues == null){
 fValues = new Hashtable();
 }

 TableData tableData = (TableData) fValues.get(tableName);
 if (tableData == null){
 tableData = new TableData(tableName);
 fValues.put(tableName,tableData);
 }

 result = tableData.getValue(colName,path);
 return result;
 }

 /*
 AddToCache

 Add the current combination to cache.
 */
 private void AddToCache(String tableName, String colName,
 String path, String colValue)
 {
 if (fValues == null){
 fValues = new Hashtable();
 }

 TableData tableData = (TableData) fValues.get(tableName);
 if (tableData == null){
 tableData = new TableData(tableName);
 fValues.put(tableName,tableData);
 }

 tableData.putValue(colName,colValue,path);
 }

 /*
 CheckTable4ExistingValue

 Check the target table for any existing value for the current
 combination
 */
 private String CheckTable4ExistingValue(Connection conn,
 String tableName,
 String colName, String path)
88 DataDeploy Administration Guide

Deploying Data from an External Data Source
 {
 String query = "SELECT " + colName + " FROM " + tableName
 + " WHERE PATH = ?";
 String result = "";
 try {
 PreparedStatement stmt =
 conn.prepareStatement(query);
 stmt.setString(1,path);
 ResultSet rs = stmt.executeQuery();
 if (rs.next()){
 result = rs.getString(1);
 }
 rs.close();
 stmt.close();
 } catch (SQLException ex){
 System.out.println("Exception:" + ex.getMessage());
 result = "";
 }
 return result;
 }

 //maintains individual column values that we supply, per
 //table and per path
 private class TableData
 {
 private String fTableName = null;

//'path' level cache
 private Hashtable fValues = null;

 /*
 Constructor
 */
 public TableData(String tableName)
 {
 fTableName = tableName;
 fValues = new Hashtable();
 }

 /*
 getValue

 Get any existing value for the given combination
 */
89

Data Organization
 public String getValue(String colName, String path)
 {
 String result = null;
 Hashtable forPath = (Hashtable) fValues.get(path);
 if (forPath != null){//no cache for this path, allocate a new one
 result = (String)forPath.get(colName);
 }
 return result;
 }

 /*
 putValue

 Store the combination
 */
 public void putValue(String colName, String value,
 String path)
 {
 Hashtable forPath = (Hashtable) fValues.get(path);
 if (forPath == null){//no cache for this path, allocate a new one
 forPath = new Hashtable();
 fValues.put(path,forPath);
 }
 forPath.put(colName,value);
 }
 }
 }
90 DataDeploy Administration Guide

Deploying Data Pointed to from an URL
Deploying Data Pointed to from an URL

You can deploy content pointed to from an URL in the following scenarios:

• When DCRs and TeamSite metadata are deployed in standalone or DAS mode with user-defined
schemas.

• When custom DCRs are deployed in standalone or DAS mode with user-defined schemas.

The <column> element supports the use of these attributes to enable deployment of content that is
pointed to by an URL:

• is-url—valid values are yes and no.

• value-from-field—valid values are any DCR element or metadata

• value—valid values are URLs that contain a file: or http: prefix.

Additionally, Binary Large Objects (BLOBs) and Character Large Objects (CLOBs) are supported
data types.

The following examples and descriptions illustrate how to construct <column> elements for
deploying content pointed to from an URL:

Example 1
<column name="picture" data-type="BLOB" is-url="yes"
value-from-field="TeamSite/Metadata/Picture"/>

During deployment, DataDeploy gets the metadata value for the key TeamSite/Metadata/
Picture for the file being deployed and treats that value as an URL. DataDeploy then reads the
contentpointed to by that URL and deploys the content to the picture column which is of data type
BLOB (Binary Large Object).

Example 2
<column name="picture" data-type="BLOB" is-url="yes"
value="file:///C:/TEMP/MYPHOTO.GIF"/>

During deployment, DataDeploy reads the content of the file C:\TEMP\MYPHOTO.GIF and deploys
it to the picture column which is of datatype BLOB.
91

Data Organization
Example 3
<column name="page" data-type="CLOB" is-url="yes"
value="http://www.interwoven.com/index.html"/>

During deployment, DataDeploy reads the content of file index.html from the HTTP server
www.interwoven.com and deploys it to the page column which is of data type CLOB.

Example 4
<column name="picture" data-type="BLOB" is-url="yes"
value-from-field="PressRelease/Picture"/>

During deployment, DataDeploy gets the value for the item PressRelease/Picture from the
DCR being deployed and treats that value as an URL. It then reads the content pointed to by that URL
and deploys the content to the picture column which is of data type BLOB.

Example 2
<column name="mytextdata" data-type="VARCHAR(4000)" is-url="yes"
value="file:///C:/TEMP/MYTEXT.TXT"/>

During deployment, DataDeploy reads the content of the file C:\TEMP\MYTEXT.TXT and deploys
that content to the mytextdata column whose datatype is VARCHAR(4000). In this case, the
content of the file is assumed to be less than or equal to 4000 bytes.

Deploying Replicant Order Numbers

The <column> element supports an replicant-order-number attribute so that replicant order
numbers can be deployed. DataDeploy inserts order values starting from 1. Order values are
automatically adjusted when replicant fields are updated or deleted. Tables can contain multiple
replicant order columns. At least one other column definition in the <group> element must contain
an is-replicant attribute that is set to yes.

Note: Do not specify the name of the replicant order column as order because that is a SQL
reserved word.
92 DataDeploy Administration Guide

Enhancing Data Before Deployment
To create a replicant order column, define a <column> element in a <group> element that is in a
<dbschema> element of the DataDeploy configuration file as follows:

Example:

<column name="rep_order" data-type="INTEGER" value-from-field="not-used"
allows-null="yes" replicant-order-column="yes"/>

1. Specify the value of the replicant-order-column attribute as yes.

2. Specify the value of the value-from-field attribute as not-used, or as an invalid field name.

3. Specify other attributes (data-type, name) as usual.

Enhancing Data Before Deployment

This section is intended for advanced users or by Interwoven Professional Services personnel. Persons
intending to implement this feature must install Java Development Kit 1.1 or greater and have good
working knowledge of the following:

• Java programming

• Java Development Kit (JDK)

• Java Database Connectivity (JDBC)

DataDeploy enables the dynamic modification data before it is deployed. The data collected by
DataDeploy is modified or augmented with tuples from external sources through a Java-based tuple
pre-processing callout. The Java interface definition for this callout is as follows (this definition can
also be found in dd-home/conf/IWExternalTupleProcessor.java):

import java.util.Hashtable;

/*
IWExternalTupleProcessor

Java interface definition that user implements to augument/supplement/instrument a
data tuple object, before it gets deployed by DataDeploy.

User must implement PreProcessTuple method.
93

Data Organization
*/

public interface IWExternalTupleProcessor
{

/*
PreProcessTuple

The only method in the interface. DataDeploy supplies the data tuple in the form
of a Hashtable object (keys being the field names). User can modify the tuple
(adding, modifying deleting key-value pairs) and then return the modified tuple
object back to DataDeploy.

Arguments:

area: Points to the "area" attribute value if the tuple was produced by either
<teamsite-templating-records> or <teamsite-extended-attributes>source. null
otherwise.

basearea: Points to the "basearea" attribute value if the tuple was produced by
either <teamsite-templating-records> or <teamsite-extended-attributes> source when
a differential extraction type is specified. null otherwise.
*/
public abstract Hashtable PreProcessTuple(Hashtable tuple,
 String area,

 String basearea);

}

Sample implementation of IWExternalTupleProcessor is as follows. This example can
also be found under $ddhome/conf directory of a DataDeploy installation:

import com.interwoven.dd100.dd.IWExternalTupleProcessor;

import java.sql.*;
import java.util.*;

/*
TupleProcessorExample

This example implementation of IWExternalTupleProcessor demonstrates how a user
written Java class can supplement data that would be deployed DataDeploy.
94 DataDeploy Administration Guide

Enhancing Data Before Deployment
For this example, let's assume that user creates a document in the TeamSite
filesystem and sets metadata on the file. Let's assume that the only Extended
Attribute set by the user on the document is called "book_id".

Assuming that related information to "book_id" value is present in another
repository, user wants to deploy that related information using DataDeploy. This
class assumes that the "related" information is present in another database/table
and retrieves such information from those tables and adds it to the
data tuple. When DataDeploy invokes PreProcessTuple method in this class, the
Hashtable tuple object contains "path", "state" and "book_id" values only.

DataDeploy loads a Tuple preprocessor class only once during a deployment.

When you compile this class you should have $ddhome/lib/dd.jar file in the
classpath. After successful compilation, you should build a .jar file for the
.class file and copy it to the $ddhome/lib directory. And then add the .jar file
name to the datadeploy_jarfiles variable in $ddhome/bin/iwdd.ipl file, before
running the deployment.
*/

public class TupleProcessorExample implements IWExternalTupleProcessor
{
 // default constructor. nothing to do here for this
 // example implementation. Typically, user might want to
 // initialize resources that would be required to retrieve
 // related information. For example, establishing database
 // connection etc.
 public TupleProcessorExample()
 {
 }

 // implement the method defined in the
//IWExternalTupleProcessor
// interface
 public Hashtable PreProcessTuple(Hashtable input,
String area, String basearea)
 {

/*
the input tuple contains path to the file, it's state
 value and other user set extended attributes, in this
example it would be the book_id value
*/

 // get the book_id value
95

Data Organization
 String book_id = (String) input.get("book_id");

 /*
once we get the book_id, go to the database and
retrieve the related information. I am not typing the full code here for
retrieving the related information.
*/

 /*
let's just assume that the related information we
 retrieved has author, ISBN, price single-valued
 attributes. we add them to the tuple here
*/

 input.put("author","interwoven");
 input.put("ISBN", "12345");
 input.put("price", "123.33");

 /*
also assume that the related information has repeating-value attributes reviewers
and reviewer-email. let's assume we have
five reviewers and their email addresses to be added to the tuple see the
associated dd config file how these fields are mapped to database table columns
*/

 for (int i = 0; i < 5; i++){
 input.put("Reviews/"+i+"/Name","reviewer"+i);
 input.put("Reviews/"+i+"/EMail","reviewer_email"+i);
 }
 return input;
 }
}

Sample DataDeploy configuration file that demonstrates how to specify Java class
name for tuple pre-processing:

<!—
This example configuration file demonstrates how user written java class to pre-
process the tuple before DataDeploy deploys the data, is specified in the config
file. Pay attention to external-tuple-processor element The user written class in
this example is TupleProcessTest whose source can be found in $ddhome/conf
directory. User can specify multiple java class names separated by comma.
DataDeploy would invoke the PreProcessTuple method in those classes in a serial
fashion, passing the tuple object returned by one class to the next one
-->
96 DataDeploy Administration Guide

Enhancing Data Before Deployment
<data-deploy-configuration>
<external-tuple-processor class-name="TupleProcessorExample"/>
 <client>
 <!-- This deployment dumps EA data from a TeamSite area to
several different database destinations -->
 <deployment name="ea-to-db">
 <source>
 <!-- Pull data tuples from TeamSite EA's -->
 <teamsite-extended-attributes
 options="full,wide"
 area="/default/main/br1/WORKAREA/wa1">
 <path name="test1.txt" />
 </teamsite-extended-attributes>
 </source>

 <destinations>
 <database db="localhost:1521:oracledb"

 user="user"
 password="password"
 vendor="oracle"
 update-type="standalone">

<dbschema>
 <group name="book_master" root-group="yes" table="book_master">

<attrmap>
 <column name="path" data-type="varchar(255)" value-from-field="path"

allows-null="no"/>
 <column name="author" data-type="varchar(255)" value-from-

field="author" allows-null="no"/>
 <column name="ISBN" data-type="varchar(255)" value-from-field="ISBN"

allows-null="no"/>
 <column name="book_id" data-type="varchar(255)" value-from-

field="book_id" allows-null="no"/>
</attrmap>
<keys>

<primary-key>
<key-column name="book_id"/>

</primary-key>

 </keys>
 </group>

 <group name="book_detail" root-group="no" table="book_detail">
<attrmap>
 <column name="book_id" data-type="varchar(255)" value-from-

field="book_id" allows-null="no"/>
97

Data Organization
 <column name="Reviewer_name" data-type="varchar(255)" value-from-
field="Reviews/[0-4]/Name" allows-null="no" is-replicant="yes"/>

 <column name="Reviewer_Email" data-type="varchar(255)" value-from-
field="Reviews/[0-4]/EMail" allows-null="no" is-replicant="yes"/>

</attrmap>

<keys>
<primary-key>

<key-column name="book_id"/>
<key-column name="Reviewer_name"/>

</primary-key>

<foreign-key parent-group="book_master">
<column-pair parent-column="book_id" child-column="book_id"/>

</foreign-key>
</keys>

 </group>
</dbschema>

 </database>
 </destinations>
 </deployment>
 </client>
</data-deploy-configuration>

To use the tuple pre-processor callout:

1. Write a Java class that implements the IWExternalTupleProcessor Java interface. Implement
the PreProcessTuple() method as required by the interface definition.

2. Compile the Java class and unit test it.

3. Create a JAR file for the compiled Java class.

4. Copy that JAR file to dd-home/lib.

5. Add the JAR file name to dd-home/lib/iwdd.ipl.

6. Write the DataDeploy configuration file

7. Specify the <external-tuple-processor> element and the value of the class-path
attribute in that configuration file as shown in the above example.
98 DataDeploy Administration Guide

Deploying a Non-replicant Comma Separated List of Values as Replicant Values
Deploying a Non-replicant Comma Separated List of Values as
Replicant Values

Multiple values entered into a field of a data capture form are often stored in the resulting DCR as a
comma separated list of values rather than as separate <item> elements within a <replicant> item.
The values in comma separated lists can be deployed as replicant values. That is, those values can be
deployed into multiple rows in a table rather than into a single row. This is accomplished by utilizing
the list-field and list-to-replicant attributes of the <column> element in a database
schema definition. When these two attributes are present, DataDeploy processes the data before the
actual deployment takes place and expands the list of values.

For example, assume that a DCR created from the following DCT is to be deployed. Note that a
comma separated list of reviewers can be entered for the Reviewers item.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE datacapture SYSTEM "datacapture5.0.dtd">

<data-capture-requirements type="content" name="book">
 <!-- data-capture-requirements elements contain area elements -->
 <ruleset name="Book Information">

<description>
 This allows for the entry of details relating to a book.
 </description>

<item name="Title">
 <database data-type="VARCHAR(100)" />
 <text required="t" maxlength="100" />
 </item>

<item name="Author">
 <database data-type="VARCHAR(40)" />
 <text required="t" maxlength="40" />
 </item>

<item name="ISBN">
 <database data-type="VARCHAR(20)" />
 <text required="t" maxlength="20" />

</item>
99

Data Organization
<item name="Price">
 <description>dollars and cents</description>
 <database data-type="REAL" />
 <text required="t" maxlength="7" validation-regex="^[0-
9]+\.[0-9]{2}$" />

<!-- validation-regex="^[0-9]+\.[0-9]{2}$" means there is a
match if the entire string contains 1 or more digits

 followed by a . followed by 2 digits -->
 </item>

 <item name="Reviewers">
 <description>Reviewer names separated by comma</description>
 <database data-type="VARCHAR(255)" />
 <text required="t" maxlength="255" />
 </item>

 </ruleset>
</data-capture-requirements>

The following database schema definition is generated for this DCT when you run
iwsyncdb.ipl -dbschemagen:

<dbschema>
 <group name="book" root-group="yes">
 <attrmap>
 <column name="Title" data-type="VARCHAR(100)" value-from-
field="Title" allows-null="no"/>
 <column name="Author" data-type="VARCHAR(40)" value-from-
field="Author" allows-null="no"/>
 <column name="ISBN" data-type="VARCHAR(20)" value-from-
field="ISBN" allows-null="no"/>
 <column name="Price" data-type="REAL" value-from-field="Price"
allows-null="no"/>
 <column name="Reviewers" data-type="VARCHAR(255)" value-from-
field="Reviewers" allows-null="no"/>
 </attrmap>
 <keys>
 <primary-key>
 <key-column name="Title"/>
100 DataDeploy Administration Guide

Deploying a Non-replicant Comma Separated List of Values as Replicant Values
 </primary-key>
 </keys>
 </group>
</dbschema>

DCRs created and deployed by using the above DCT and associated database schema would create a
single table in the database as follows:

To deploy the same data such that the comma separated list of reviewers is stored in a separate table as
replicant values, modify the database schema as follows:

<dbschema>
 <group name="book" root-group="yes">
 <attrmap>
 <column name="Title" data-type="VARCHAR(100)" value-from-
field="Title" allows-null="no"/>
 <column name="Author" data-type="VARCHAR(40)" value-from-
field="Author" allows-null="no"/>
 <column name="ISBN" data-type="VARCHAR(20)" value-from-
field="ISBN" allows-null="no"/>
 <column name="Price" data-type="REAL" value-from-field="Price"
allows-null="no"/>
</attrmap>

 <keys>
 <primary-key>
 <key-column name="Title"/>
 </primary-key>
 </keys>
 </group>

 <group name="reviewers" root-group="no">
 <attrmap>
 <column name="Title" data-type="VARCHAR(100)" value-from-
field="Title" allows-null="no"/>

Title Author ISBN Price Reviewers

Interwoven Author1 12345 100.00 R1,R2,R3,R4
101

Data Organization
 <column name="Reviewers" data-type="VARCHAR(255)" list-to-
replicant="yes" list-field="Reviewers" value-from-field="Reviewers/[0-4]/
Reviewer" is-replicant="yes" allows-null="yes"/>
</attrmap>
 <keys>
 <primary-key>
 <key-column name="Title"/>
 <key-column name="Reviewers"/>
 </primary-key>
 <foreign-key parent-group="book">
 <column-pair parent-column="Title" child-column="Title"/>
</foreign-key>

 </keys>
 </group>

</dbschema>

In the above modified database schema, an additional <group> element represents the additional
table that contains the list of reviewers. Note that the Reviewers column definition in that group
contains list-field and list-to-replicant attributes. The list-field attribute contains
the comma separated list of values, and the list-to-replicant indicates to DataDeploy that it
must transform that list into multiple values before deployment. A deployment based on the above
modified database schema would look like this:

Title Author ISBN Price

Interwoven Author1 12345 100.00

Title Reviewers

Interwoven R1

Interwoven R2

Interwoven R3

Interwoven R4
102 DataDeploy Administration Guide

Other Data Organization Issues
Other Data Organization Issues

Data Types and Sizes

The default data type for deployed data is VARCHAR(255). You can set different data types, or a
different size for VARCHAR, in the DataDeploy configuration file. See Item 11, “Rows to update” in
“Sample File Notes” starting on page 115 for more information.

Database Object Name Lengths

To overcome the maximum database object name length imposed by database servers, DataDeploy
builds a mapping table called IWOV_IDMAPS in the destination database. For each object name that
exceeds the maximum length limit for the database, this mapping table establishes a relationship
between the original object name and a generated name conforming to the database’s object name
length limits. The generated name is then used in place of the original object name in all database
transactions. This implementation allows table names, column names, constraint names, and view
names to contain any number of characters.

The IWOV_IDMAPS table contains three columns: Type, Longid, and Shortid. The Type column
defines types as follows:

1: Table name
2: Column name
3: View name
4: Constraint name

The Longid column contains the entire character string for the object as it appears in the original
source file. The Shortid column contains the generated name conforming to the database’s object
length limits. For example, a typical table might appear as follows:

Typ
e

Longid Shortid

2 INFORMATION0_PRESENTATIONTITLE IWC_AA6A93A7161

1 INTRANET_DEPTINFO__DATADPLYBRNCH_STAGING IWT_106342E4D4C4

3 INTRANET_DEPTINFO__DATADPLYBRNCH_STAGING_VIEW IWV_AEGF12D4E

4 INTRANET_DEPTINFO__DATADPLYBRNCH_STAGING_CONSTRAINT IWO_F023AF1290
103

Data Organization
Because different databases support different maximum object name lengths, the threshold for when a
Shortid name is generated depends on the database vendor and/or type. DataDeploy uses the values
set for the max-id-value attribute to determine this threshold. See Item 10, “Database Section” in
“Sample File Notes” starting on page 115 for more information. See also “Table Update Details” on
page 182.

When deploying to a DB2 database, DataDeploy maps table, column, and view names only when a
name exceeds 128 characters, and maps constraint names only when they exceed 18 characters.

If you construct an SQL statement that performs an activity on a table that was created by
DataDeploy, and if that table contains any database objects whose names exceed the maximum length,
the SQL statement must first reference the mapping table to determine the actual (Longid) object
name(s). This requirement applies to all SQL statements, including those not executed through
DataDeploy.
104 DataDeploy Administration Guide

Chapter 5

Configuration File Details and
Examples
This chapter contains the following detailed information about configuration file contents:

• Which elements are required in each type of configuration file.

• Rules for parameter substitutions within configuration files.

• An annotated sample TeamSite-to-database configuration file.

• A sample TeamSite-to-XML configuration file.

• A sample database-to-database configuration file.

• A sample database-to-XML configuration file.

• A sample XML-to-database configuration file.

• A sample XML-to-XML configuration file.

• The configuration files for “Starting State,” “Event 1,” and “Event 2” shown on page 38.

Note: If you are using DataDeploy in a non-US English environment, see Appendix D,
“Internationalization.”

Required Elements

The type of deployment (for example, TeamSite-to-database, TeamSite-to-XML, and so on)
determines which configuration file sections are required and which elements can reside in each
section. Only a few parameters are actually required within these sections. The rest are optional,
making it possible to have short, simple configuration files. Section hierarchy and requirements for
each supported type of deployment are as follows. Sections in bold text are required; those in normal
text are optional. Indentation shows nesting levels.
105

Configuration File Details and Examples
TeamSite-to-Database
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

teamsite-extended-attributes
teamsite-templating-records

destinations
substitutions
filter
database

select
update
sql

server

TeamSite-to-XML
filter

keep
discard

substitutions
client
data-deploy-elements
deployment

substitutions
exec-deployment
source

teamsite-extended-attributes
teamsite-templating-records

destinations
substitutions
filter
xml-formatted-data

server
106 DataDeploy Administration Guide

Required Elements
Database-to-Database
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

database
fields

destinations
substitutions
filter
database

select
update
sql

server

Database-to-XML
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

database
fields

destinations
substitutions
filter
xml-formatted-data

server
107

Configuration File Details and Examples
XML-to-Database
filter

keep
discard

substitutions
client
data-deploy-elements
deployment

substitutions
exec-deployment
source

xml-formatted-data
fields

destinations
substitutions
filter
database

select
update
sql

server

XML-to-XML
filter

keep
discard

substitutions
data-deploy-elements
client
deployment

substitutions
exec-deployment
source

xml-formatted-data
fields

destinations
substitutions
filter
xml-formatted-data

server
108 DataDeploy Administration Guide

Parameter Substitutions
Parameter Substitutions

Any parameter string in a configuration file can be named using a parameter substitution. You set
parameter string substitutions on the same command line you use to invoke DataDeploy with the
iwdd command. Syntax is as follows:
"varname=varvalue"

After a string is defined on the command line, all occurrences of $varname in the configuration file
named on the command line are substituted with the string varvalue. Do not use the following
terms for varname; they are keywords for the iwdd command and would be interpreted as such:

• cfg

• deployment

• iwdd-op

• remote-host

• remote-port

Examples of parameter substitution within a configuration file are as follows:

prefix_string_$varname
$varname^_suffix_string (where ^ is a concatenator)
prefix_$varname^_suffix

Sample TeamSite-to-Database Configuration File

The following sample configuration file shows how to set parameters for a typical TeamSite-to-
database deployment. It identifies which parameters are required, shows both global and in-flow
usage, and is keyed to a comment table following the file that explains more details about each section
and parameter. Most of the elements in this file are also used to define types of deployment other than
TeamSite-to-database. For examples of configuration files for these other deployment types, see the
sample file sections starting on page 141.
109

Configuration File Details and Examples
<!--Sample DataDeploy configuration file -->
<data-deploy-configuration>
<data-deploy-elements filepath="/local/iw-home/db.xml"/>
<filter name="MyFilter">

<!-- This is a filter that can be used by any deployment -->
<keep>

<!-- Any of the following (logical OR): -->
<!-- dir2/subdir/index.html, any *.html file in dir1, -->
<!-- OR anything with key 'guard' AND value 'IGNORE -->

<or>
<field name="path" match="dir2/subdir/index.html" />
<field name="path" match="dir1/*.html" />
<and>

<!-- Must match all of these (logical AND) -->
<field name="key" match="guard" />
<field name="value" match="IGNORE" />

</and>
</or>

</keep>

<discard>
<!-- Exclude the file dir1/ignoreme.html, anything -->
<!-- with key 'unneededKey', and anything with state -->
<!-- DELETED -->

<or>
<field name="path" match="dir1/ignoreme.html" />
<field name="key" match="unneededKey" />
<field name="state" match="DELETED" />

</or>
</discard>

</filter>

<substitution name="GlobalSubstitution">
<!-- This substitution can be used by any deployment. -->
<!-- It replaces the first occurrence of the string 'foo' -->
<!-- in the 'path' field with 'bar', and completely -->
<!-- replaces the 'value' field with the string 'SpecialValue'.-->
<field name="path" match="foo" replace="bar" />
<field name="value" replace="SpecialValue" />

</substitution>

Filter section
(global) 2

Substitution
section (global) 3

Include file 1
110 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
<client>
<!-- This deployment puts EA data from a TeamSite area into -->
<!-- a destination database. -->
<deployment name="ea-to-db">

<source>
<!-- Pull data tuples from (local) TeamSite EA's. -->
<!-- Only those EA's that are different from the -->
<!-- ones in the base area will be reported. The -->
<!-- actual workarea will be taken from the 'user' -->
<!-- command-line parameter. -->
<teamsite-extended-attributes

options="differential, wide"
area="/default/main/branchx/WORKAREA/$user"
base-area="/default/main/branchx/STAGING">

<path name="dir1/index.html" visit-directory="no" />
<path name="dir2/subdir" visit-directory="shallow" />

<!-- Use the command-line parameter 'path' -->
<!-- as the path name. If the path happens -->
<!-- to be a directory, visit its children -->
<!-- recursively. -->
<path name="$path" visit-directory="deep" />

<!-- Read a list of files from the file -->
<!-- '/tmp/SomeFiles'. The default directory -->
<!-- mode 'deep' will be used for each file. -->
<path filelist="/tmp/SomeFiles" />

</teamsite-extended-attributes>
</source>

<!-- Apply global filter 'MyFilter' to all tuples -->
<filter use="MyFilter" />

Start of Deployment section 5 (required)
Start of Source section 6 (required)

Location of
source data 8

(area

End of Source
section 6

(required)

Call global
filter 2

Source type7

(required)

Start of
Client
section4
111

Configuration File Details and Examples
<substitution>
<!-- Modify each tuple according to the following -->
<!-- match/replace pairs. In this case: any path -->
<!-- that contains the string 'WORKAREA/.../' will -->
<!-- have the string replaced by 'STAGING/'; any -->
<!-- path that contains 'EDITION/abcd' will be -->
<!-- replaced with '/This/Special/Path', and any -->
<!-- tuple whose key starts with 'BEFORE' will be -->
<!-- changed to begin with 'AFTER'. -->
<field name="path"

match="(.*)/WORKAREA/[^/]+/(.*)"
replace="$1/STAGING/$2" />

<field name="path"
match="EDITION/abcd"
replace="/This/Special/Path" />

<field name="key"
match="^BEFORE(.+)"
replace="AFTER$1" />

</substitution>
<!-- Also apply the substitution 'GlobalSubstitution' -->
<substitution use="GlobalSubstitution" />

<!-- Start the destinations section. -->
<destinations

host="DDServer.interwoven.com"
port="1357">
<!-- Filtered and substituted data will be sent to a -->
<!-- DataDeploy server on port 1357 of the machine -->
<!-- DDServer.interwoven.com. Then -->
<!-- send some tuples to 'table1' on the database that -->
<!-- is located using 'jdbc:remote.machine.com' and -->
<!-- provide user 'dba' with password 'ThisIsASecret'. -->
<!-- Perform any other activities that are associated -->
<!-- with the option 'ea-update'. Timeout is 45 seconds. -->
<database name="myproductiondb"

db="host1:1357:db1"
table="table1"
vendor="oracle"
user="dba"
password="ThisIsASecret"
timeout="45">

Substitution
section
(in-flow) 9

Call global substitution 3

Start of
Destinations
section 10

(required)

Start of Database
section and location
of destination
database 11

(required)
112 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
<select>
<!-- Select the row whose value in the column -->
<!-- named 'filename' matches the current path, -->
<!-- whose value in column 'InterestingTag' -->
<!-- matches the current key as modified by any -->
<!-- substitutions, and that has literal -->
<!-- value 'litData' in column 'info'. -->
<column name="filename"

value-from-field="path" />
<column name="InterestingTag"

value-from-field="key" />
<column name="info"

value="litData" />
</select>

<update type="delta"
base-table="RootTable1"
state-field="StateInfo">

<!-- Update column 'RelatedValue' to contain the -->
<!-- current EA value, and update the column -->
<!-- whose name is taken from the 'key' field -->
<!-- with the literal value 'present'. The table -->
<!-- being updated is assumed to be a delta -->
<!-- table modifying base table 'RootTable1'; -->
<!-- the differencing operations are driven by -->
<!-- the value of tuplefield 'StateInfo'. -->
<column name="RelatedValue"

value-from-field="value" />
<column name-from-field="key"

value="present" />
</update>

Rows to
update 12

(required)

Update type
and related
data 13

(required)

Columns to
update 14

(required)
113

Configuration File Details and Examples
<!-- If it is necessary to create a new table for -->
<!-- this deployment, the following SQL statement -->
<!-- will be used for that purpose (as opposed to -->
<!-- a capriciously chosen internal default) -->
<sql action="create">

<!-- This comment should be ignored. However -->
<!-- the parameter token in the next line is -->
<!-- subject to parameter substitution. -->

CREATE TABLE table1 (
Path VARCHAR(300) NOT NULL,
KeyName VARCHAR(300) NOT NULL,
Value VARCHAR(4000) ,
State VARCHAR(4000) ,
CONSTRAINT KVP PRIMARY KEY (Path,KeyName)

)
</sql>

</database>
</destinations>

</deployment>

</client>

<server>
<!-- The DataDeploy server will listen on port 1949 of IP -->
<!-- 204.247.118.99 -->
<bind ip="204.247.118.99" port="1949" />

<!-- Only accept connections from these hosts -->
<allowed-hosts>

<host addr="ddclient.interwoven.com" />
<host addr="204.247.118.33" />

</allowed-hosts>

<!-- Server-specific deployment information -->
<for-deployment name="ea-to-db">

<database db="host1:1357:db1"
user="scott"
password="tiger" />

</for-deployment>
</server>

</data-deploy-configuration>

Server section 16

SQL
section 15
114 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
Sample File Notes

1. Include File: You can use <data-deploy-elements> to name a file containing data to include
by reference. The file named in <data-deploy-elements> can contain any number of
<database>, <filter>, and <substitution> elements. It must use the same syntax for
these elements that the main DataDeploy configuration file uses. See Items 2, 3, and 11 in this
section for details. If mutually exclusive attributes are set in the include file and the main
DataDeploy configuration file, all are used in the deployment. If conflicting attributes are set in the
two files, those set in the main DataDeploy configuration file take precedence.

2. Filter section (global): Filters let you explicitly state which tuples will be deployed. The keep
section contains criteria for selecting which tuples will be deployed, and the discard section
contains criteria for those which will not be deployed. Both sections use field tags. All field
tags must contain at least one name/match attribute pair. When you deploy from TeamSite,
name must be either key, value, path, or state. When you deploy from a source other than
TeamSite, name can be any be any field name that is valid in the source area. The match attribute
names a targeted value for name. A filter defined in the nesting level shown here and located
before the Deployment section will be global. Global filters do not become active until they are
called by the <filter> element’s use attribute between the Source and Destinations sections
using the syntax shown later in the sample file. Note that filters can also be defined in an include
file and then be called by the use attribute. If a configuration file does not contain a filter section,
all tuples are deployed (limited only by the type of update being performed). A configuration file
can contain any number of global filter sections. A configuration file can also contain in-flow filters
within a destinations section. See Item 10 for details.

3. Substitution section (global): Substitutions let you configure DataDeploy to automatically
replace character strings or entire fields in a table. Substitutions use field tags that must contain
at least one name/replace attribute pair. As with filters, name is either key, value, path, or
state. The replace attribute is the new string that will overwrite the existing string or field.
115

Configuration File Details and Examples
Two additional attributes, match and global, are optional. Common usage examples are as
follows:

A substitution defined in the nesting level shown here and located before the Deployment section
will be global. Global substitutions do not become active until they are called by the
<substitution> element’s use attribute between the Source and Destinations sections using
the syntax shown later in the sample file. Note that substitutions can also be defined in an include
file and then be called by the use attribute. A configuration file can contain any number of global
substitution sections.

4. Client section: The client section lets you specify a set of client-specific parameters and
activities. A configuration file that is expected to run on a two-tier system or as a client on a three-
tier system must have exactly one client section.

5. Deployment section: The deployment section is where you assign a name to each
deployment, and specify deployment source, destination, and update type. You can have any
number of deployment sections in a configuration file, and each must have a unique name. The
name shown here, ea-to-db, is the name you would specify on the command line when you
invoke DataDeploy. The deployment section is required in all configuration files. The
<exec-deployment> subelement lets you execute one or more deployments that are defined
elsewhere in the same configuration file. Syntax is as follows:

<exec-deployment use="dbname" />

To do this: Include this line in the Substitution section:

Replace all Value field
values with the string
Newvalue

<field name="value" replace="Newvalue"/>

In the Path field, replace
first occurrence of blue
with red

<field name="path" match="blue"
replace="red"/>

In the Path field, replace all
occurrences of blue with
red

<field name="path" match="blue"
replace="red" global="yes"/>

In the State field, replace
the first occurrence of
Original with
NotPresent

<field name="key" match="Original"
replace="NotPresent"/>
116 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
where dbname refers to the name of a database as defined in the name attribute in a <database>
element.

6. Source section: The source section resides one nesting level inside the deployment section.
It is where you name the type of data to extract from TeamSite and the location(s) of that data.
Each deployment section must have exactly one source section.

7. Source type: The first nesting level within the <source> element contains a subelement
defining what type of data is to be extracted from TeamSite. This subelement has the following
possible elements:

Subelement Description

teamsite-templating-records Used when deploying a TeamSite Templating data
content record from TeamSite. Supported options:
wide (default), full (default), differential.

teamsite-extended-attributes Used when deploying anything other than a data
content record from TeamSite. Supported options:
narrow (default), wide, full (default),
differential.

xml-formatted-data Used when deploying from an XML file. Supported
options: narrow (default), wide, full (default),
differential.

database Used when deploying from a database. Supported
options: narrow (default), wide, full (default),
differential.
117

Configuration File Details and Examples
Each of the preceding subelements supports three attributes: options, area, and base-area.
Details about the options attribute are as follows:

To configure an incremental deployment, set the <teamsite-extended-attributes> or
<teamsite-templating-records> elements as follows. The result is a delta table containing
the differences between vpath1 and vpath2.
<teamsite-extended-attributes
options="differential"
area="vpath1"
base-area="vpath2"

...additional subelements if necessary...

</teamsite-extended attributes>

8.Location of source data: The area attribute defines the TeamSite workarea, staging area, or
edition from which DataDeploy will extract data. This attribute is required in all deployment
sections. The value of area should be the vpath name of the area containing the changes you intend

options Value Description

wide Creates a wide table based on wide tuples containing any number of key-
value pairs. Specified in addition to differential or full. The wide and
narrow values are mutually exclusive; you cannot specify both within the
same element. The wide value is the default for the
teamsite-templating-records element.

narrow Creates a 4-column (narrow) table based on narrow tuples. Specified in
addition to differential or full. The wide and narrow values are
mutually exclusive; you cannot specify both within the same element. The
narrow value is the default for the teamsite-extended-attributes,
xml-formatted-data, and database elements. The teamsite-
templating-records element does not support the narrow value.

differential Instructs DataDeploy to extract just the delta data from a workarea/staging-
area comparison. Normally, you specify differential when performing a
delta update. The differential and full values are mutually exclusive;
you cannot specify both within the same element. The default is full.

full Instructs DataDeploy to create a table populated with all of the data from a
named area. Normally, you specify full when performing a base or
standalone update (update types are defined later in the destinations
section). The differential and full values are mutually exclusive; you
cannot name both as options within the same element. The default is full.
118 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
to deploy. If differential is set, you must also supply a vpath value for base-area. This value
should be the vpath name of the edition or staging area that is the basis for comparison with the
workarea you named in area. The optional path element can have one (but not both) of the
following values: name or filelist. Setting the name attribute lets you specify a relative path
name to a file or directory in the area(s) you named earlier in area (and base-area if
applicable), or stipulate that the path name will be entered on the command line when you invoke
DataDeploy. See “Parameter Substitutions” on page 109 for information about entering path names
on the command line. Setting the filelist attribute lets you specify a file containing a list of
files, and is typically used when you perform a delta update of a workarea containing only a few
changed files. If you do not name a path value, it defaults to “.” and DataDeploy performs a deep
search of the directory named in area (and base-area if applicable). The visit-directory
attribute lets you specify DataDeploy’s level of searching within a directory. The three possible
values are no, shallow, and deep. Details are as follows:

The default value of visit-directory is deep.

9. Substitution section (in-flow): In-flow substitutions let you define substitution rules that
apply only to specific parts of a deployment. DataDeploy supports in-flow substitutions within the
deployment and destinations elements. For example, the in-flow substitution shown in the
sample configuration file is nested one level inside of the deployment element, and therefore
applies only to the ea-to-db deployment. You can also nest in-flow substitutions one level inside
destinations elements, in which case the substitution applies only to a specific destination. In-
flow substitutions have the same syntax as global substitutions. In addition, in-flow substitutions
support a global attribute that lets you that lets you control whether the substitution applies to
all occurrences or just the first occurrence of the matching pattern.

Value Description

no If path name is a directory, it is not searched.
shallow If path name is a directory, it is searched to the first level.
deep All directories and all subdirectories found in path name are searched

recursively.
119

Configuration File Details and Examples
If global is set to no, the substitution applies only to the first occurrence. If it is set to yes, the
substitution applies to all occurrences. For example:

<destinations>
<database . . .>
<substitution name="SubForThisTarget">

<field name="BField" match="from_a"
 replace="to_b"

global="yes" />
</substitution>

The example shown in the sample configuration file earlier in this chapter uses Perl 5 regular
expression syntax for match values. A configuration file can contain any number of in-flow
substitution sections.

10.Destinations section: The destinations section resides one nesting level inside the
deployment section. It is where you name the destination system(s), timeout value, database,
and table, and is also where you define the update type. Each deployment section can have any
number of destinations sections, allowing you to designate multiple destinations in a single
configuration file. Destination system and timeout details are as follows. Database, table, and
update type are explained later in Item 11.

Attribute Description Required? Value Syntax

host Machine name of the DataDeploy server
(3-tier systems only).

No "host.
domain.com"

port Port on host to which data will be sent. No "portnumber"

timeout How long the client system will wait for a
response from the remote host during
communication exchange. This tag can
also reside in the Database section, in
which case it has a different definition. See
Item 11 for details.

No "seconds"
120 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
You can also nest in-flow filters within a destinations element, in which case the filter applies
only to that specific destination. For example:

<destinations>
<database . . .>
<filter name="FilterForThisTarget">

<discard>
<field name="AField" match="^DoNotWant/.*"/>

</discard>
</filter>

In-flow filters have the same syntax as global filters.

11. Database section: The first subelement in the destinations section defines the type of
destination for the data. This subelement can be either <database> or <xml-formatted-
data>, depending on whether the destination is a database or an XML file. See “Sample TeamSite-
to-XML Configuration File” on page 141 for an example of xml-formatted-data usage. When
deployment is to a database, the <database> tag and its name and db attributes are required in
all deployment sections. A destinations section can have any number of <database>
subelements or a combination of <database> and <xml-formatted-data> subelements.
Syntax for the values db and other attributes of the <database> tag are as follows:

Attribute Value Description Required?

name Any user-defined
database name
surrounded by double
quotes, for example,
"myproductiondb".

Used to reference the database
through the use attribute elsewhere
in the configuration file. For
example, the <exec-deployment>
element could contain
use="myproductiondb".

Only if
the use
attribute
is used
elsewhere
in the file.

db Depends on vendor; see
the table on page 132.

Names the address string of the
destination database.

Yes.*
121

Configuration File Details and Examples
use The name of the
database set by the name
attribute.

If a database is defined in an include
file, you can reference it as a
destination by including it here. If
you reference a database with use,
you do not need to specify name or
db in the reference because they are
already defined in the include file.
However, you can optionally set db
or any other attribute together with
the use attribute, in which case the
explicitly set attributes take
precedence.

No.

table Any user-defined table
name surrounded by
double quotes, for
example, "table1".

Names a destination table in db. Yes.* (not
required if
you are
using
user-
defined
database
schemas)

user Any user name
surrounded by double
quotes, for example,
"user1".

Authorizes a specific database user. Yes.*

password Any user-defined
password surrounded by
double quotes, for
example, "w2lYS".

Names the assigned password for
user. Note that any password
named in a configuration file is not
encrypted, and can be read by
anyone having access to the
configuration file.

Yes.*

timeout Any positive integer
representing the
duration of the timeout
in seconds, surrounded
by double quotes, for
example, "4".

How long the client system will
attempt to log into the database
system before giving up. This tag can
also reside in the Destinations section
prior to the Database section, in
which case it has a different
definition. See Item 10 for details.

No.

Attribute Value Description Required?
122 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
clear-table "yes" or "no" Specifies whether a delta table should
be cleared before receiving new data.
Useful to set to yes (which is the
default) when deleting many
workarea files prior to submitting.
Set to no if updating extended
attributes on existing files prior to
submitting.
Note: This attribute is not supported
if you are using user-defined database
schemas.

No.

table-view "yes" or "no" Specifies whether to create a view
automatically during deployment.
The default is no. Setting to yes is
incompatible with Sybase ASE (but
works correctly with Sybase SQL
Anywhere and all other supported
databases). Setting to yes and using
Sybase ASE will result in an aborted
deployment.
Note: This attribute is not supported
if you are using user-defined database
schemas.

No.

Attribute Value Description Required?
123

Configuration File Details and Examples
* Either here or in the Server section’s Database section. See Item 16.

** Not required, but highly recommended. Even if the appropriate value is set by the vendor default, setting it again in max-id-
length ensures that the value is explicitly set and easily verified. This also ensures that the value will remain constant should the
default value (as set dynamically by DataDeploy) ever change.

User-defined Database Schema <database> Attributes

The DataDeploy 5.0 release introduced the following <database> attributes, many of which
support user-defined database schemas:

vendor "microsoft" Specifies Microsoft SQL Server. Sets
a default max-id-length of 128.

Yes.

"microsoft-
inetuna"

Specifies Microsoft SQL Server using
an i-net UNA driver. Sets a default
max-id-length of 128.

"oracle" Specifies an Oracle database. Sets a
default max-id-length of 30.

"sybase" Specifies Sybase SQL Anywhere. Sets
a default max-id-length of 128.

"ibm" Specifies IBM DB2. Sets a default
max-id-length of 18.

"informix" Specifies an Informix database. Sets a
default max-id-length of 18.

max-id-length Any positive integer
appropriate for an object
name length (consult the
documentation provided
by the database vendor).

Specifies the maximum number of
characters in any database object
name (for example, column names,
table names, and so forth),
overriding any defaults set by the
vendor attribute.

No.**

Attribute Value Description Required?
124 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
Attribute Value Description Required?

update-type base, delta,
standalone
(Default is
standalone.)

Similar to type attribute in
<column> element. Value used
only if <dbschema> element is
present.

Yes.

state-field Indicates which tuple
item will be interpreted
as state information.

Specifies the tuple field used for
the state value. Similar to state-
field attribute of <update>
section. Value used only if
<dbschema> is present. Added
as part of
ddcfg_uds.template; all
individual configuration files
generated by iwsyncdb.ipl –
ddgen command inherit the
state-field attribute.

No.

enforce-ri "yes" or "no"
(Default is no.)

"Enforce Referential Integrity". If
set to yes, CREATE TABLE
statements will contain column
level and table level constraint
clauses, if <foreign-key>
elements are defined for
<group> elements. Used only if
<dbschema> element is present.

No.

ri-constraint-
rule

Set to the desired
constraint rule clause—
for example, "ON
DELETE CASCADE".
(Default is "".)

 "Referential Integrity Constraint
Rule". Refer to the Database
vendor’s manual for
CONSTRAINT rule clause. Used
only if <dbschema> element is
present.

No.
125

Configuration File Details and Examples
real-update Enables you specify,
independent of the
enforce-ri setting,
whether updates are
performed by deleting
existing rows and
inserting new ones
(default), or by executing
a series of UPDATE SQL
statements (“real
updates”).

To configure DataDeploy to
perform real updates:
• If the enforce-ri attribute is

set to YES, do not specify the
real-update attribute.

• If the enforce-ri attribute is
not set or set to No, set the
real-update attribute to
YES.

If you do not want DataDeploy to
perform real updates when the
enforce-ri attribute is not set
or set to YES, set the
real-update attribute to No.

Notes: Do not modify fields that
are mapped to primary or foriegn
key columns if you set either
enforce-ri or real-update
to YES.*
DATE, DATETIME, TIMESTAMP,
CLOB, and BLOB data types are
always updated regardless of
whether the data has been
modified.

No.

Attribute Value Description Required?
126 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
delete-tracker "yes" or "no" If row updates are required, set to
yes when performing standalone
deployments if no column in the
root group is mapped to path
value or no column in any group
in <dbschema> is mapped to
path value.
When this option is set to yes,
DataDeploy creates a table called
IWDELTRACKER to track
primary key values for the root
group in order to retrieve, update
or delete rows that represent a
single data content record.
This attribute value is ignored if
the root group contains a column
mapped to path or if all the
groups contain a column mapped
to path. If no group contains a
column mapped to path and if
delete-tracker attribute is
not set to yes, deletes are not
possible with standalone
deployments.

Yes. (Yes
only when
you need to
perform row
updates in
standalone
deployments
and if no
column in the
root group is
mapped to
path value
or no column
in any group
in
<dbschema>
is mapped to
path value.)

log-level "1", "2", "3"
(Default is 3.)

1: Log errors only
2: Log warnings and errors
3: Log everything

No.

drop-table-
prefix

Set to the data content
record's category and
type—for example,
INTERNET_MEDICAL.

Used only when iwdd-op
command line option is set to
drop-table and <dbschema>
element is in the deployment
configuration. iwsyncdb.ipl
automatically generates value of
drop-table-prefix when
DAS must process a remove
workarea or remove branch
event. Refer to
drop.cfg.example.

No.

Attribute Value Description Required?
127

Configuration File Details and Examples
drop-table-
suffix

Set to branch_STAGING
if removing a branch or to
drop all base and delta
tables for a branch; set to
branch_WORKAREA_
workarea if removing a
workarea or to drop all
delta tables for a
workarea.

Used only when iwdd-op
command line option is set to
drop-table and <dbschema>
element is in the deployment
configuration. iwsyncdb.ipl
automatically generates value of
drop-table-suffix when
DAS must process a remove
workarea or remove branch
event. Refer to drop.cfg
example.

No.

drop-table "yes" or "no" Set to yes if iwdd-op=drop-
table command line option is
set.

No.

commit-batch-
size

positive integer
(Default is to deploy all
records in a single
transaction.)

When a large number of records
(data content records or files with
extended attributes) are deployed
and a failure occurs, by default
DataDeploy rolls back the entire
deployment. When a positive
value is specified for this attribute,
DataDeploy commits the
deployment after successfully
deploying the specified number of
records. If an error occurs while
processing a batch, only that batch
is rolled back. For example, if you
are deploying 100 data content
records and commit-batch-size is
10, DataDeploy will commit the
deployment after the successful
deployment of every 10 data
content records. If the commit-
batch-size attribute is 1,
DataDeploy commits every tuple
that is successfully deployed.

No.

Attribute Value Description Required?
128 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
check-schema "yes" or "no" When check-schema is set to
yes, DataDeploy detects
mismatches caused when a
datacapture.cfg (for a data
type or the datacapture.cfg
in iw-home/config) is
modified after having deployed
data content records or metadata
earlier and if new columns are
introduced during the
modification. The mismatch
between existing base and delta
tables and the <column>
definition in a deployment in a
DataDeploy configuration file is
detected only if the tables were
created in a previous deployment.
Do not set this attribute
permanently; doing so will cause
performance problems because
DataDeploy must obtain
information from database
metadata tables to verify schema
consistency. This attribute is
applicable to both wide table
deployment and deployment with
user-defined database schemas.

No.

Attribute Value Description Required?
129

Configuration File Details and Examples
* If you need to modify such fields, you must clear the value, then save and deploy the DCR. Then insert the new value, save the
DCR, and deploy it. Databases report constraint violation errors if child tables reference the field values you are deleting.
Therefore, you must delete the corresponding rows in child tables as well. To do that automatically, set the ri-constraint-rule
attribute to " ON DELETE CASCADE ". Recreate the rows when you insert the new value for the parent table.

** DataDeploy supports two different JDBC driver protocols when connecting to an Oracle database. The “thin” driver is the default
driver used by DataDeploy. When DataDeploy detects CLOB or BLOB data types being used in a deployment, it attempts to
connect using the OCI driver; that is, the OCI driver is used only if required under the circumstances. The “thin” driver is the

use-oci "yes" or "no" When use-oci attribute is set to
yes and the vendor attribute is
set to oracle, DataDeploy
attempts to connect to the
database server using the OCI
driver even if no BLOB and/or
CLOB data types are involved in
deployment. If use-oci
attribute is set to yes, the db
attribute must be set to the TNS
name of the oracle database
server.**

No.

schema-helper-
cache-size

positive integer
(Default is 500.)

Sets cache size. If not set or set to
an invalid value, the default is
500.***

No.

schema-helper-
cleanup

"yes" or "no" When set to yes, DataDeploy
creates a thread to monitor the
cache and to remove least recently
used objects from the cache when
it becomes full.***

No.

schema-helper-
cleanup-
interval

positive integer
(Default is 2.)

Used only if schema-helper-
cleanup is set to yes. Determines
how frequently, in minutes, the
cache cleanup thread must wake
up and check the cache size. If you
set schema-helper-cleanup
to yes but do not set schema-
helper-cleanup-interval, the
cleanup thread runs every 2
minutes.***

No.

Attribute Value Description Required?
130 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
default because it is Type 4 Pure Java, which does not require any other Oracle client libraries whereas OCI driver depends on
Oracle client product.

***While performing transactions (insert, delete, update), DataDeploy converts column values that are in the string format to the
actual data type of the column in the target table. For this purpose, it uses the DatabaseMetaData.getColumns() JAVA API to
retrieve metadata information about columns in a table. To minimize repeated execution of this Java API, DataDeploy maintains a
cache. This attribute in <database> allows you to optimize cache for your environment.

Performance Enhancement for Deploying Heavily Nested DCRs

Added in the DataDeploy 5.5.1 release to support a performance enhancement for deploying heavily
nested DCRs, the following <database> element is used to specify the location of a row map cache
file:

DataDeploy builds and traverses data tree structures to compute the number of rows it needs to
process for tables that map nested elements in DCRs. To speed the process, DataDeploy can be
configured to “serialize” (cache in a file) the Java objects produced by such tree traversing, and to read
in those objects during actual deployments. When this feature is enabled, DataDeploy builds the
serialized Java objects in row maps (contained in a row map cache file) for those <group> elements
in a <dbschema> definition that contain replicants from various nested levels which are mapped to
table columns.

Note: When mapping replicants from various nested levels into a <group>, you can map multiple
replicants from the innermost levels and one of their parent, grand-parent, and so on. You
cannot map multiple replicants from a level that is not the innermost nesting level.

When executing deployments that contain DCRs which have replicants from various levels of nesting,
DataDeploy checks whether the row-map-cache-file is specified. If it is, the serialized Java
objects are read from the row map cache file. DataDeploy builds the data structures if an error occurs
while reading the row map cache file or if no file is specified in the row-map-cache-file attribute.

In DAS mode, DataDeploy stores the most recently used row map cache file in memory.

Attribute Value Description Required?

row-map-cache-
file

Full path to a row
map cache file.

Row map cache files enable
DataDeploy to more quickly deploy
DCRs that contain many levels of
nested elements.

No.
131

Configuration File Details and Examples
See “iwsyncdb.ipl Usage” on page 189 for details on how to generate row map files. Note that if
<group> elements are modified after a row map file has been generated, you must regenerate that
row map file.

db Attribute Syntax

The syntax for the value of the <database> element’s db attribute depends on the database vendor.
Details are as follows. Syntax and example lines should all be on one line in the DataDeploy
configuration file. Line breaks shown here are due to formatting constraints of this document.

Database/Driver Syntax of db Attribute Example

Informix db="//host_name:port/
database_name:INFORMIXSERVER=
server_name"

db="//
sys1.interwoven.com:1
357/
bank01:INFORMIXSERVER
= OL_sys1"

Oracle/JDBC thin db="host_name:port:instance_identifier" db="host1:1357:db1"

Oracle/JDBC OCI * db="database_tnsname" db="bank01"

(See Oracle
documentation for details
about configuring TNS
names)

Sybase SQL Anywhere db="ODBC_data_source_name" db="server1"

Sybase ASE db="host_name:port/database_name" db="sys1.interwoven.
com:1357/bank01"

Sybase ASA/jConnect db="host_name:port" db="sys1.interwoven.
com:2638"

Sybase ASA/
JDBC-ODBC

db="ODBC_data_source_name" db="server1"
132 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
* Used by DataDeploy if Oracle extension data types (for example, CLOB) are used. Requires installation of the OCI client library on
the system from which the iwdd.ipl command is executed.

The <database> subelement also supports the <stored-procedure> subelement, which
allows you to deploy key-value pairs that are treated as a stored procedure. The <stored-
procedure> subelement resides in the first nesting level within the <database> element, and
lets you write a stored procedure using standard SQL syntax as supported by the current database.
You can then store the procedure in the database by deploying it as an extended attribute with
DataDeploy. Syntax is as follows:

<stored-procedure>
<fieldname prefix="any_prefix_1"/>
<fieldname prefix="any_prefix_2"/>
<fieldname prefix="any_prefix_n"/>

</stored-procedure>

The value of any_prefix can be any case-insensitive character string. DataDeploy will examine
each tuple for key-value pairs in which the key name starts with any of the specified prefix values.
For each match, the value for that key is treated like a database stored procedure; that is,
DataDeploy does not validate the value of the key-value pair for syntax and semantic correctness.
Instead, DataDeploy passes the value to the database, the key-value pair is not inserted into the
table, and errors (if any) are returned to the user. If creation of stored procedure fails and if the
tuple contains non-stored procedure key-value pairs, the entire deployment is aborted.

12.Rows to update: The select section is where you select database rows to update with data
from the current tuple. It is also where you can specify a data type for the deployed data other than
the default VARCHAR 255 (you can also set the data type in Update section; see Item 13, “Update
type and related data”). You identify rows by stating one or more matching criteria for column

Microsoft SQL Server/
JDBC-ODBC

db="data_source_name" db="bank01"
(See Microsoft
documentation for details
about creating data source
names on Windows
systems)

Microsoft SQL Server/
i-net UNA

db="host_name:port?database=
database_name"

db="localhost:1433?
database=datadeploy

IBM DB2 (UDB) db="//host_name:port/database_name" db="//host1:1357/db1"

Database/Driver Syntax of db Attribute Example
133

Configuration File Details and Examples
values in that row. For example, you can select a row whose values in columns named “color” and
“size” are respectively “red” and “small.” Column matching criteria are set through the column
tag. Each database section must have exactly one select section, and each select section
must contain at least one column tag. Each column tag must contain the following two attributes:

1) name or name-from-field

2) value or value-from-field

The column tag can optionally contain the data-type and data-format attributes.

Syntax is as follows:

Attribute Description Value Syntax

name Specifies a column by name. Text string containing any
column name from the table
specified by the database tag.

name-from-field Specifies a column name by reference to a
field in the current tuple.

Any valid tuple field.

value Specifies the literal value to match in the
column just named.

Text string containing any table
value.

value-from-field Specifies a value to match by reference to a
field in the current tuple.

Any valid tuple field.

data-type Specifies the data type for the extended
attributes being deployed. If not set,
DataDeploy assumes a data type of
VARCHAR.

Any data type supported by the
database.
134 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
For example, you would use the following <column> element configuration to deploy the
KeyName1 extended attribute values as integers:

<column name="ValueCol"
data-type="INT"
value-from-field="KeyName1" />

Or, to deploy KeyName1 extended attribute values as a date formatted to show Year-Month-Day
Hours:Minutes:Seconds (assuming an Oracle database):

data-format Only required if data-type is set.
Specifies the format of the extended
attributes being deployed as a date or
time.Can be used only under the following
conditions:
• On an Oracle database server, and

when data-type is either DATE,
DATETIME, or TIMESTAMP. If you set
data-format when any of these con-
ditions do not exist, the setting is
ignored.

• If data-type is either DATE or
DATETIME.
Note: The format of the data-for-
mat value must conform to the specifi-
cation described for the
SimpleDateFormat Java class. For
information on the SimpleDateFor-
mat Java class, see “Note on Simple-
DateFormat Java Class” on page 136.

Any valid date or time format.

is-replicant Specifies whether a column is mapped to a
replicant field. Use this attribute only with
user-defined database schemas.

"yes" or "no"

allows-null Specifies whether a column can have null
values. Use this attribute only with user-
defined database schemas.

"yes" or "no"

Attribute Description Value Syntax
135

Configuration File Details and Examples
<column name="ValueCol"
data-type="DATE"
data-format="yyyy-MM-dd HH:mm:ss"
value-from-field="KeyName1" />

To deploy KeyName1 extended attribute values as a date formatted to show Year-Month-Day
(assuming an Oracle database), you must change the data-format value as shown:

<column name="ValueCol"
data-type="DATE"
data-format="yyyy-MM-dd"
value-from-field="KeyName1" />

If the data-type attribute is not specified in the DataDeploy configuration file, DataDeploy uses
VARCHAR (255) as the data type. If many columns are created in the table, the total size of each
row could easily exceed the maximum row size imposed by the database server. Therefore, it is
recommended that you set the data-type attribute whenever possible for the columns defined in
the <select> and <update> sections of the DataDeploy configuration file.

Note on SimpleDateFormat Java Class

Use the following table to specify the data-format attribute value in the <column> element if
the data-type attribute is set to DATE or DATETIME:

Symbol Meaning Presentation Example

G era designator (Text) AD

y year (Number) 1996

M month in year (Text & Number) July & 07

d day in month (Number) 10

h hour in am/pm (1-12) (Number) 12

H hour in day (0-23) (Number) 0

m minute in hour (Number) 30

s second in minute (Number) 55

S millisecond (Number) 978

E day in week (Text) Tuesday
136 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
Examples using the US locale:

13.Update type and related data: The update section is where you select the type of update,
reference table (if applicable), and the table column(s) to update. Update type can be delta,
base, or standalone (the default). Type delta requires two attributes, base-table and
state-field. The base-table attribute names the base table that will be modified after the
delta table (named earlier in the database section) is updated. The state-field attribute
names which tuple item will be interpreted as state information. Each database section must
have exactly one update section. The relationship between update section settings and the table
named earlier in the database section’s table attribute is as follows:

D day in year (Number) 189

F day in week in month (Number) 2 (2nd Wednesday in
July)

w week in year (Number) 27

W week in month (Number) 2

a am/pm marker (Text) PM

k hour in day (1-24) (Number) 24

K hour in am/pm (0-11) (Number) 0

z time zone (Text) Pacific Standard Time

‘ escape for text (Delimiter)

‘’ single quote (Literal) ‘

 Format Pattern Result

"yyyy.MM.dd G 'at' hh:mm:ss z" 1996.07.10 AD at 15:08:56 PDT

"EEE, MMM d, ''yy" Wed, July 10, '96

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:00 PM, PST

 "yyyyy.MMMMM.dd GGG hh:mm aaa" 1996.July.10 AD 12:08 PM

Symbol Meaning Presentation Example
137

Configuration File Details and Examples
14.Columns to update: In the update section, you must also select at least one column to update
from the row(s) you specified earlier in the select section. You select columns by naming
matching criteria in column tag attributes just as you did in the select section. All of the
attributes shown in the table in Item 13, “Update type and related data,” are supported in the
column tag as well.

15.SQL section: The optional sql section lets you create SQL commands that override system
defaults and execute automatically during deployment. The sql element supports three
attributes: action, user-action, and type. Details are as follows:

If the Update section contains
this:

And the Database
section contains this: The result is:

type ="base" table="Table1" DataDeploy assumes Table1 is a base
table. Generates a full base table called
Table1 or modifies existing full base
table Table1.

type ="base"
base-table ="Table2"

table="Table1" DataDeploy assumes Table1 is a delta
table. Effectively merges rows from
delta table Table1 into base table
Table2.

type ="delta"
base-table ="Table2"

table="Table1" DataDeploy assumes Table1 is a delta
table based on the full base table
Table2. Generates a delta table called
Table1 or modifies existing delta table
Table1. Does not update Table2
with delta or any other type of data.
138 DataDeploy Administration Guide

Sample TeamSite-to-Database Configuration File
Attribute Value Description

action create Lets you define your own SQL CREATE TABLE
command for table creation during deployment.
Commands set by this attribute override the default
DataDeploy schema for creating tables. The default
schema is SELECT * FROM TABLENAME

show Lets you define your own SQL SELECT command for
the show-table operation. Commands set by this
attribute override the default DataDeploy schema.

exist Lets you define database-specific queries to check for
the existence of a table. Commands set by this attribute
override the default DataDeploy schema.

tracker-exist Lets you define database-specific queries to check for
the existence of the tracker table. Commands set by
this attribute override the default DataDeploy schema.

tracker-create Lets you define your own SQL CREATE TABLE
command for tracker table creation during
deployment. Commands set by this attribute override
the default DataDeploy schema.

user-action anyname Lets you define any arbitrary SQL command(s) for
execution during deployment. For example:
<sql user-action="showview" type=query>
Arbitrary SQL commands...
</sql>

The commands specified here execute only if you set
the iwdd-op=do-sql and user-op=anyname
options on the command line when you invoke
DataDeploy. Because the action and user-action
attributes are controlled by mutually exclusive
command line options, you cannot execute both
attributes at the same time (that is, within the same
deployment).
139

Configuration File Details and Examples
Note: It is not necessary for the statements in the <select> and <update> elements to match the
table schema in an <sql> element.

16.Server section: The server section lets you specify a set of server-specific parameters. A
deployment that is expected to run on a server in a three-tier system must have exactly one
server section. The bind tag lets you specify where on the server machine the DataDeploy
server will listen. Each server section must have exactly one bind section. In a bind section,
the port attribute is always required, while the ip attribute is required only if the server machine
has more than one available IP address. The optional allowed-hosts element lets you specify
which hosts are allowed to connect to the DataDeploy server. If you include an allowed-hosts
element, its host subelement must have an addr value in the form of an alphanumeric machine
name or an IP address. The optional for-deployment element lets you define several client
attributes just as you did in the database section (see Item 11). These attributes are: db, table,
user, password, and timeout. If you set these attributes here, they override any settings for
the same attributes in the client-side database section. An alternative to including a server
section in a client/server configuration file is to have a separate file containing just a server
section. This arrangement allows you to separate client and server information into different files,
which can reside on different machines.

type query If user-action is set, you must also set type.
Setting type="query" specifies that user-action
will be a query.

update If user-action is set, you must also set type.
Setting type="update" specifies that user-action
will be an update.

Attribute Value Description
140 DataDeploy Administration Guide

Sample TeamSite-to-XML Configuration File
Sample TeamSite-to-XML Configuration File

The following file configures a typical deployment from TeamSite to an XML file. The xml-
formatted-data tag has a single attribute, file, which specifies the absolute path and file name of
the destination file. A destinations section can have any number of xml-formatted-data
elements, or a combination of xml-formatted-data and database elements. When deploying to
an XML file, you can also remap field column tags as shown on page 145.

<data-deploy-configuration>
<client>

<deployment name="teamsite-to-xml">
<source>

<!-- Pull data tuples from TeamSite EA's -->
<teamsite-extended-attributes

options="full"
area="/default/main/STAGING" >
<path name="." />

</teamsite-extended-attributes>
</source>
<destinations>

<xml-formatted-data file="/u/temp/someTable.xml" />
</destinations>

</deployment>

</client>
</data-deploy-configuration>
141

Configuration File Details and Examples
The following sample file shows the default format of a typical XML destination file:

<?xml version="1.0"?>
<xml-tuple-data version="2.0">
<data-tuple>

<tuple-field name="path">mydir/f9</tuple-field>
<tuple-field name="state">Original</tuple-field>
<tuple-field name="value">small</tuple-field>
<tuple-field name="key">size</tuple-field>

</data-tuple>
<data-tuple>

<tuple-field name="path">mydir/f9</tuple-field>
<tuple-field name="state">Original</tuple-field>
<tuple-field name="value">blue</tuple-field>
<tuple-field name="key">color</tuple-field>

</data-tuple>
</xml-tuple-data>
142 DataDeploy Administration Guide

Sample Database-to-Database Configuration File
Sample Database-to-Database Configuration File

<data-deploy-configuration>
<client>
<deployment name="db-to-db">
<source>

<!-- Pull data tuples from database -->
<database db="server"

user="DBA"
password="SQL"
table="staging">

<fields>
<field name="path" column="Path" />
<field name="key" column="KeyName" />
<field name="value" column="Value" />
<field name="state" column="State" />

</fields>
</database>

</source>
<destinations>

<!-- Oracle8 on Unix -->
<database db="diver:1521:testdb"

user="scott"
password="tiger"
table="someTable">

<select>
<column name="Path"

value-from-field="path" />
<column name="KeyName"

value-from-field="key" />
</select>
<update>
<!-- Update column 'Value' to contain current EA value, & update column-->
<!-- 'State' to contain current state. This is a k-v-p specification. -->

<column name="Value"
value-from-field="value" />

<column name="State"
value-from-field="state" />

</update>
</database>

</destinations>
</deployment>
</client>
</data-deploy-configuration>
143

Configuration File Details and Examples
In this file, the field elements specify which columns in the source database DataDeploy will use
when building a tuple for each row. The select element chooses rows to update in the destination
database. It will choose rows only having unique combinations of the values named in the column
subelements (in this case, path and key). See “Sample TeamSite-to-XML Configuration File” on
page 141 for an example of XML destination file format.
144 DataDeploy Administration Guide

Sample Database-to-XML Configuration File: Extracting Data Tuples from a Single Table
Sample Database-to-XML Configuration File: Extracting Data
Tuples from a Single Table

The following file configures a deployment from a database to an XML file, including remapped field
column tags (as opposed to the default output shown on page 141):

<data-deploy-configuration>
<client>

<deployment name="db-to-xml">
<source>

<!-- Pull data tuples from databse -->
<!-- Oracle8 on Unix -->
<database db="diver:1521:testdb"

user="scott"
password="tiger"
table="tupleTable">

<fields>
<field name="path" column="EPath" />
<field name="key" column="EKeyName" />
<field name="value" column="EValue" />
<field name="state" column="EState" />

</fields>
</database>

</source>
<destinations>

<xml-formatted-data file="/tmp/tupleTable.xml">
</xml-formatted-data>

</destinations>
</deployment>

</client>
</data-deploy-configuration>
145

Configuration File Details and Examples
The resulting XML output file is as follows:

<?xml version="1.0"?>
<xml-tuple-data version="2.0">
<data-tuple>

<tuple-field name="path">mydir/f9</tuple-field>
<tuple-field name="state">Original</tuple-field>
<tuple-field name="value">small</tuple-field>
<tuple-field name="key">size</tuple-field>

</data-tuple>
<data-tuple>

<tuple-field name="path">mydir/f9</tuple-field>
<tuple-field name="state">Original</tuple-field>
<tuple-field name="value">blue</tuple-field>
<tuple-field name="key">color</tuple-field>

</data-tuple>
</xml-tuple-data>
146 DataDeploy Administration Guide

Sample Database-to-XML Configuration File: Filtering
Sample Database-to-XML Configuration File: Filtering

The previous implementation extracts all rows from the specified table and creates XML output for
the required fields. The following implementation allows you to filter the rows that you wish to select
from the specified table.

Use the <database> element’s where-clause attribute if you wish to filter table rows. To filter
rows, set the where-clause attribute to a string value that specifies the row selection criteria.

<data-deploy-configuration>
<client>

<deployment name="db-to-xml">
<source>

<!--Pull data tuples from database -->
<!--Oracle8 on Unix -->
<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="tupleTable"
vendor="oracle"
where-clause=" Epath = 'mypath.txt' AND Evalue like 'myvalue%' " >

<fields>
<field name="path"column="EPath"/>
<field name="key"column="EKeyName"/>
<field name="value"column="EValue"/>
<field name="state"column="EState"/>

</fields>
</database>

</source>
<destinations>

<xml-formatted-data file="/tmp/tupleTable.xml">
</xml-formatted-data>

</destinations>
</deployment>

</data-deploy-configuration>
</client>
147

Configuration File Details and Examples
In this example, DataDeploy executes the following query to extract data tuples:

SELECT * FROM TUPLETABLE WHERE Epath = ‘mypath.txt’ AND Evalue like ‘myvalue%’

Note: You cannot use some of the SQL operators (such as > and <) within the string value for the
where-clause attribute because doing so may generate XML parser errors. If you must use
such operators as part of the where-clause attribute value, use the <db-producer-
query> element, as shown in the next example.
148 DataDeploy Administration Guide

Sample Database-to-XML Configuration File: Extracting Data Tuples from Multiple Tables
Sample Database-to-XML Configuration File: Extracting Data
Tuples from Multiple Tables

The previous examples show database-to-XML deployment implementations that only allow you to
extract data tuples from a single table. The following implementation allows you to extract data tuples
from multiple tables. This implementation uses the <db-producer-query> element as a
subelement of <database>:

<data-deploy-configuration>
<client>

<deployment name="db-to-xml">
<source>

<!--Pull data tuples from database -->
<!--Oracle8 on Unix -->
<database db="diver:1521:testdb"
user="scott"
password="tiger"
vendor="oracle"
table="not-used">

<db-producer-query>
<![CDATA[
 SELECT A.C1, A.C2, B.C3, B.C4 FROM

TABLE1 A, TABLE2 B WHERE
A.ID = B.ID AND
A.ID = 10

]]>
</db-producer-query>

</database>
</source>

<destinations>
<xml-formatted-data file="/tmp/tupleTable.xml">
</xml-formatted-data>

</destinations>
</deployment>

</data-deploy-configuration>
</client>
149

Configuration File Details and Examples
Notes:

• To deploy tuples to an XML file, use the <db-producer-query> element to specify a complete
SQL query statement that DataDeploy should use to extract data tuples. Ensure that the entire
SQL select query is within a single CDATA node. If more than one CDATA node is specified
under <db-producer-query>, DataDeploy will only use the first node.

• Use the where-clause attribute for the <database> element and the <db-producer-
query> subelement inside the <database> element only if the <database> element is a
subelement of the <source> element.

• If you specify the <db-producer-query> subelement, DataDeploy ignores the <database>
element’s table and where-clause attribute values.

• If you do not specify a where-clause attribute value and a <db-producer-query>
subelement, DataDeploy will select all rows from the table specified in the <database>
element’s table attribute.
150 DataDeploy Administration Guide

Sample XML-to-Database Configuration File
Sample XML-to-Database Configuration File
The following file configures a typical deployment from an XML file to a database:

<data-deploy-configuration>
<client>

<deployment name="xml-to-db">
<source>

<!-- Pull data tuples from XML file -->
<xml-formatted-data file="/u/iw/wcuan/billTable.xml" >

<fields>
<field name="path" element="path" />
<field name="key" element="key" />
<field name="value" element="value" />
<field name="state" element="state" />

</fields>
</xml-formatted-data>

</source>
<destinations>

<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="TableFromXML">

<select>
<column name="Path"

value-from-field="path" />
<column name="KeyName"

value-from-field="key" />
</select>
<update>
<!-- Update column 'Value' to contain the current EA value, and -->
<!-- update column 'State' to contain the current state. This is a -->
<!-- k-v-p specification. -->

<column name="Value"
value-from-field="value" />

<column name="State"
value-from-field="state" />

</update>
</database>

</destinations>
</deployment>

</client>
</data-deploy-configuration>
151

Configuration File Details and Examples
In this file, the field elements specify which attributes in the source XML file DataDeploy will use
when building a tuple for each Path-Key-Value-State item in the file. The element attribute can
name any valid element; it is not limited to naming just the path, key, value, or state elements
shown here.
152 DataDeploy Administration Guide

Sample XML-to-XML Configuration File
Sample XML-to-XML Configuration File

The following file configures a typical deployment from an XML file to another XML file. This is
different than just copying the source file because it includes an in-flow substitution as described in the
file comments. You can also include filters when configuring an XML-to-XML deployment, although
that feature is not shown here.

<data-deploy-configuration>
<client>

<deployment name="xml-to-xml">
<source>

<!-- Pull data tuples from XML file -->
<xml-formatted-data file="/u/iw/wcuan/billTable.xml" >

<fields>
<field name="path" element="path" />
<field name="key" element="key" />
<field name="value" element="value" />
<field name="state" element="state" />

</fields>
</xml-formatted-data>

</source>
<substitution>

<!-- Modify each tuple according to the following -->
<!-- match/replace pairs. In this case: any path -->
<!-- that contains the string 'WORKAREA/.../' will -->
<!-- have the string replaced by 'STAGING/'; any -->
<!-- path that contains 'EDITION/abcd' will be -->
<!-- replace with '/This/Special/Path', and any -->
<!-- tuple whose key starts with 'BEFORE' will be -->
<!-- changed to begin with 'AFTER'. -->
<field name="path"

match="(.*)/WORKAREA/[^/]+/(.*)"
replace="$1/STAGING/$2" />

<field name="path"
match="EDITION/abcd"
replace="/This/Special/Path" />

<field name="key"
match="^BEFORE(.+)"
replace="AFTER$1" />

</substitution>
<destinations>

<xml-formatted-data file="/u/temp/someTable.xml" />
153

Configuration File Details and Examples
</destinations>
</deployment>

</client>
</data-deploy-configuration>

In this file, the field elements specify which attributes in the source XML file DataDeploy will use
when building a tuple for each Path-Key-Value-State item in the file.
154 DataDeploy Administration Guide

Starting-State Base Table Configuration File
Starting-State Base Table Configuration File

The following file generates the initial base table BT1 shown in the Starting State diagram on page 40:

<data-deploy-configuration>
<client>

<deployment name="staging">
<source>

<!-- Pull data tuples from TeamSite EA's -->
<teamsite-extended-attributes

options="full"
area="/default/main/STAGING" >
<path name="." />

</teamsite-extended-attributes>
</source>
<destinations>

<!-- Oracle8 on Unix -->
<database db="diver:1521:testdb"

user="scott"
password="tiger"
table="staging">
<select>

<column name="Path"
value-from-field="path" />

<column name="KeyName"
value-from-field="key" />

</select>
<update type="base"

state-field="state">
<!-- Update column 'Value' to contain the current EA value, and -->
<!-- update column 'State' to contain the current state. This is a -->
<!-- k-v-p specification. -->

<column name="Value"
value-from-field="value" />

<column name="State"
value-from-field="state" />

</update>
</database>

</destinations>
</deployment>

</client>
</data-deploy-configuration>
155

Configuration File Details and Examples
Event 1 Configuration File

The following file configures the delta deployment shown in the Event 1 diagram on page 40:

<data-deploy-configuration>
<client>

<deployment name="delta">
<source>

<teamsite-extended-attributes
options="differential"
base-area="/default/main/STAGING"
area="/default/main/WORKAREA/$workarea" >
<path name="." />

</teamsite-extended-attributes>
</source>
<destinations>

<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="Delta_$workarea">
<select>

<column name="Path"
value-from-field="path" />

<column name="Key"
value-from-field="key" />

</select>
<update type="delta"

base-table="staging"
state-field="state">
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>

</client>
</data-deploy-configuration>

Note that this file uses the parameter substitution $workarea in the <database> section. See
“Parameter Substitutions” on page 109 for more information.
156 DataDeploy Administration Guide

Event 2 Configuration File
Event 2 Configuration File

The following file configures the delta deployment shown in the Event 2 diagram on page 40:

<data-deploy-configuration>
<client>

<deployment name="submit">
<source>

<teamsite-extended-attributes
options="differential"
base-area="/default/main/STAGING"
area="/default/main/WORKAREA/$workarea">
<path filelist="/tmp/somefiles" />

</teamsite-extended-attributes>
</source>
<destinations>

<database db="diver:1521:testdb"
user="scott"
password="tiger"
table="Delta_$workarea">
<select>

<column name="Path"
value-from-field="path" />

<column name="Key"
value-from-field="key" />

</select>
<update type="base"

base-table="staging"
state-field="state">
<column name="Value"

value-from-field="value" />
<column name="State"

value-from-field="state" />
</update>

</database>
</destinations>

</deployment>

</client>
</data-deploy-configuration>
157

Configuration File Details and Examples
158 DataDeploy Administration Guide

Chapter 6

Invoking DataDeploy

This chapter describes how to invoke DataDeploy from the command line, and the conditions under
which the DataDeploy daemon runs as a service. You can also use the syntax shown here to invoke
DataDeploy through an iwat trigger script or an external workflow task as described on page 23.

iwdd.ipl Command

Use the iwdd.ipl command to invoke DataDeploy from the command line, in an iwat trigger
script, or as a workflow task. Usage is as follows. Note that iwdd.ipl resides in dd-home/bin.

Usage
iwdd.ipl cfg=configfile [deployment=deploymentname][iwdd-op=tableopname]

iwdd.ipl cfg=configfile [deployment=deploymentname][iwdd-op=do-sql] user-
op=anyname mytable=anytable

iwdd.ipl remote-host=hostname [remote-port=portnumber][iwdd-
op=serveropname]

Syntax

iwdd.ipl cfg Invokes DataDeploy, and optionally performs table
operations.

cfg=configfile The name of the DataDeploy configuration file, including
path name (either absolute or relative to the current
directory).

deployment=deploymentname Invokes DataDeploy as a client. Without this option,
DataDeploy is invoked as a server.
159

Invoking DataDeploy
deploymentname The value of the name attribute of the deployment
element.

iwdd-op=tableopname Performs the table operation specified by tableopname.
This is not a standalone option; you can only use it
together with deployment=deploymentname.

tableopname Displays or deletes tables as follows:

show-table: Displays an ASCII version of the table
named by table= in the configuration file’s database
section for the specified deployment.

drop-table: Deletes the same table from the database.

show-tracker: Displays an ASCII version of the tracker
table.

drop-tracker: Deletes the tracker table from the
database.

iwdd-op=do-sql Performs an SQL operation on the named table.

user-op=anyname Performs the user-defined SQL operation defined by
user-action=anyname in the DataDeploy
configuration file’s sql element. See Item 14 in “Sample
File Notes” on page 115 section for more information.
You must also set mytable=anytable whenever you set
user-op=anyname.

iwdd remote-host Performs server operations on the server specified in
hostname.

hostname The IP address or name of the server host.

remote-port=portnumber Specifies the port number on the host. Defaults to 1949 if
remote-port is not set.

iwdd-op=serveropname Performs the server operation specified by
serveropname. Defaults to ping-server if not set.
160 DataDeploy Administration Guide

iwdd.ipl Command
serveropname ping-server: Returns a standard string to verify the
server connection.

stop-server: Waits for current deployment to
complete and then stops the server. All communication
with the server is cut off after you issue this command.

kill-server: Stops the server immediately even if a
deployment is running.

Examples

To invoke DataDeploy as a server based on the configuration file /bin/conf/ddconfig.xml:

iwdd.ipl cfg=/bin/conf/ddconfig.xml

To invoke DataDeploy as a client based on the configuration file /bin/conf/ddconfig.xml and
the deployment named ea-to-db:

iwdd.ipl cfg=/bin/conf/ddconfig.xml deployment=ea-to-db

To delete the tracker table from the database:

iwdd.ipl cfg=/bin/conf/ddconfig.xml deployment=ea-to-db iwdd-op=drop-tracker

To stop the server on port 1234 of the host examplehost:

iwdd.ipl remote-host=examplehost remote-port=1234 iwdd-op=stop-server

To ping the server on port 1949 of the host examplehost:

iwdd.ipl remote-host=examplehost
161

Invoking DataDeploy
Execute the following to invoke DataDeploy as a client to perform the SQL operation showpaths on
the table prtable. In this example:

• The DataDeploy configuration file is ../conf/templating/extranet/pr.cfg.

• showpaths is the value for the user-op attribute in the configuration file’s <sql> element.

• mytable="prtable" is a parameter substitution for all occurrences of $mytable in the
configuration file (see “Parameter Substitutions” on page 109 for more information).

iwdd.ipl cfg=../conf/templating/extranet/pr.cfg deployment="dosql" iwdd-
op=do-sql user-op="showpaths" mytable="prtable"

Running DataDeploy as a Service

The Interwoven DataDeploy service automatically starts the DataDeploy daemon for DAS
operation if the iwsyncdb.cfg file exists in dd-home/conf. If iwsyncdb.cfg does not
exist, the Interwoven DataDeploy service starts the DataDeploy daemon for 3-tier
operation.
162 DataDeploy Administration Guide

Chapter 7

Synchronizing OpenDeploy
and DataDeploy
The OpenDeploy and DataDeploy integration enables the deployment of file assets and database assets
in one single transactional deployment.

This chapter describes the configuration tasks you must perform to synchronize OpenDeploy with
DataDeploy, and how to invoke a deployment after synchronization is complete.

Additional Resources

Refer to the OpenDeploy Release Notes for a listing of which releases of DataDeploy are supported by
this release of OpenDeploy.

Refer to the ReadMe file included with the OpenDeploy software for examples of configuration files
and additional information.

Component Location

The solution components reside in the following location on the OpenDeploy host:

od-home/solutions/ddsync
163

Synchronizing OpenDeploy and DataDeploy
Setup

To set up the OpenDeploy-DataDeploy integration, follow these steps:

1. Move the example components to their respective locations described in “Component
Descriptions” on page 165.

2. Install the IWXML.pm module for use with iwperl on the target production server. You can per-
form this task by copying the following file

od-home/solutions/perl/IWXML.pm

to any one of the @INC paths of iwperl. You can view the INC paths by entering the following
command at the prompt:

iwperl -V

You must also modify ddsync.ipl on the target production server with the DCR types. See
“Component Descriptions” on page 165 for more information.

3. (For internationalization support only) Install the I18N_utils.pm module from the following
location:

od-home/solutions/perl/I18N.pm

into iwperl through a TeamSite subdirectory under one of the iwperl @INC paths. For
example, to setup DataDeploy's iwperl, enter the following command at the prompt:

cp od-home/solutions/perl/I18N_utils.pm dd-home/iw-perl/lib/perl5/
site_perl/5.005/TeamSite

If your iwperl was installed as part of TeamSite 5.5 or later, this module will already reside
there. You must also copy the following file:

od-home/solutions/ddsynch/odxmlenc.map

to your od-home location. This mapping file specifies the encoding you want to be used by the
OpenDeploy internal XML log header.
164 DataDeploy Administration Guide

Component Descriptions
4. Modify the source and location paths as needed:

– For a full deploy: oddd_full.xml

– For a delta deploy: oddd_delta.xml

You also can take advantage of the OpenDeploy parameter substitution feature for more dynamic
specifications.

5. Regenerate by entering one of the following commands at the prompt. Different syntax is used
depending on whether wide-table format or user-defined schema support is desired.

– Wide-table format:

iwsyncdb.ipl -genloadcfg loaddb.cfg workarea

– User-defined schema:

iwsyncdb.ipl -genloadcfg outfile-name -dumpdir fullpath-production-
dumpdir -targetdir fullpath-production-targetdir development-workarea

6. Manually change loaddb.cfg to reflect the following:

– The path location to database.xml

– Any changes to templating types schemas

Component Descriptions

This section contains the path and name of the OpenDeploy and DataDeploy integration components,
and their descriptions. Note that dd-home refers to the DataDeploy home directory and od-home
refers to the OpenDeploy home directory for the base server and receiver software.

• dd-home/bin/ddsync.ipl — the DNR script. This file is installed on both development and
production servers. For user-defined schema support, customization is required. The DCR types
must be specified. In ddsync.ipl, search for:

USER CUSTOMIZATION REQUIRED

For internationalization support, your host’s local encoding must be specified. This field is also
found under the CUSTOMIZATION section. The default value is NONE.
165

Synchronizing OpenDeploy and DataDeploy
• dd-home/conf/database.xml — the “include” file for the database element. This file is
installed on a production server.

• dd-home/conf/subxmldb.template — a file used by iwsyncdb.ipl -genloadcfg to
generate a loaddb.cfg. This file is installed on the development server to generate
loaddb.cfg, which then needs to be relocated to a production server.

• dd-home/conf/subxmldb_uds.template — see description for
dd-home/conf/subxmldb.template above.

• dd-home/conf/subxmldb_uds_custom.template — see description for
dd-home/conf/subxmldb.template above.

• dd-home/conf/loaddb.cfg — a generated DataDeploy configuration file used to run
DataDeploy to update the database from dump files. This file is generated on the development
server, but needs to be relocated to a production server. This file can be regenerated through the
following command:

iwsyncdb.ipl -genloadcfg output-path/loaddb.cfg -dumpdir production-
dump-dir targetdir production-target-dir area-vpath

• dd-home/conf/tsxml.cfg — a DataDeploy configuration file used to create the XML dump
files from TeamSite. This file is installed on the development server.

– Using wide-table format — copy from */tsxml.cfg.example-wide

– Using user-defined-schema — copy from */tsxml.cfg.example-uds

• od-home/conf/odrcvr.xml — the configuration file for an OpenDeploy host with the
receiver software installed. This type of OpenDeploy host can only receive files. This file is
installed on a production server.

• od-home/conf/oddd_full.xml — an OpenDeploy source host configuration file. This file is
installed on the development server.

• od-home/conf/oddd_delta.xml — an OpenDeploy source host configuration file. This file is
installed on development machine.

• od-home/odxmlenc.map — an OpenDeploy mapping file. This mapping file specifies encoding
to use in the OpenDeploy internal XML log.
166 DataDeploy Administration Guide

Usage
Usage

This section describes how these integration tools are used.

• On a development server, run the following command at the prompt:

iwodstart oddd_full or

iwodstart oddd_delta

If you want to use parameter substitution, enter the following command at the prompt:

iwodstart oddd_full -k "var1=value1"

where the $var1 parameter is present somewhere in the oddd_full.xml configuration file.

• On a production server, start up the OpenDeploy receiver services or daemons.

How the Integration Works

This section describes the processes that OpenDeploy and DataDeploy perform to complete the
integration.

1. OpenDeploy runs the specified deployment transactionally.

2. A pre-deploy Deploy and Run script is kicked off to invoke DataDeploy.

– The script (ddsync.ipl) is a wrapper that invokes DataDeploy to extract TeamSite DCR or
TeamSite metadata into XML dump files.

– The configuration files for the DataDeploy invocation have been prepped to dump out the DCR
types and metadata of a specified area.

3. OpenDeploy transfers its normal set of files plus the XML dump files.
167

Synchronizing OpenDeploy and DataDeploy
4. A post-deploy Deploy and Run script is kicked off to invoke DataDeploy:

– The ddsync.ipl script invokes DataDeploy to import into the configured database all the
actual DCR files. No transient XML dump file is used here.

– The config files for the DataDeploy invocation have been prepped to read a series of generated
file lists of the DCR types. Metadata is the exception and still follows the wide-table scheme.
The generated file lists are derived from parsing the OpenDeploy internal XML log. For
internationalization, these generated file lists are in the UTF-8 encoding for DataDeploy usage.

5. Both file assets and database assets should now be deployed. If any part of the deploy should fail,
the entire deployment should be restored back to previous state. For example:

– If the DataDeploy component fails, the OpenDeploy deployed files will be reverted.

– If the OpenDeploy component fails, the DataDeploy component will not be invoked.

ddsync.ipl Usage

Here are the different ways ddsync.ipl can be used:

Wide-Table Format:

ddsync.ipl area_top dump_dir dump full area

ddsync.ipl area_top dump_dir dump differential area basearea

ddsync.ipl area_top dump_dir load full

ddsync.ipl area_top dump_dir load differential
168 DataDeploy Administration Guide

How the Integration Works
User-Defined Schema:

ddsync.ipl area_top dump_dir dumpea full area

ddsync.ipl area_top dump_dir dumpea differential area basearea

ddsync.ipl area_top dump_dir loaduds full

ddsync.ipl area_top dump_dir loaduds differential

area_top The absolute path to top of area directory.

dump_dir The relative path to dump directory in area.

dump Dump TeamSite metadata to file.

load Load database from dump file.

load_uds Load database from DCR filelist.

full The entire area traversal.

differential Comparing between two areas.

basearea If differential is used, the basearea is the
previous area.

area If differential is used, the area is the current
area.

The ddsync.ipl usage also creates the following log file:

dd-log-home/ddsync_dump_load.log
169

Synchronizing OpenDeploy and DataDeploy
Notes

• DCRs targeted for deployment must be located within the templatedata directory structure on
the source system and deployed to the templatedata directory structure on the recipient
system.

• Run only directory comparison deployments. TeamSite-based and filelist modes are not supported
at this time.

• OpenDeploy-DataDeploy integration is most suitable for deployment of editions.

• Because OpenDeploy uses remote file system comparison and DataDeploy is either full or
differential, the consistency of the files and their respective database data is not tightly maintained.
The deployment workflow process must be tightly adhered to. For example, the first
development-to-production deployment of an edition will deploy all files and all database assets.
Subsequent deployments will be directory comparisons between a subsequent edition and the
production server and tuple-diffs between current edition and the previous edition. Injection of
new files or database content on any point outside of the edition deployment process will create
data inconsistencies.

• Be sure to change all references to /local/iw-home in ddsync.ipl and oddd_send.cfg to
reflect the location of the actual OpenDeploy home directory. The oddd_send.cfg and
oddd_receive.cfg files are OpenDeploy sender and receiver host configuration files, and as
such require specific configuration for both types of hosts. If these configuration files already exist
on systems targeted for the integration, the sample configuration files should be integrated into the
production systems.
170 DataDeploy Administration Guide

Chapter 8

Automating Deployment with
DAS
This chapter describes how to configure and use the Database Auto-Synchronization (DAS) module. It
contains the following sections:

• Overview

• Software Re quirements

• DAS Program and Configuration Files

• Configuring DAS

Overview

The DAS module is bundled with DataDeploy. After you configure DAS, it automatically deploys data
content records (DCRs) or extended attributes (metadata) to a database whenever a TeamSite user:

• Creates, changes, or deletes a data content record through the TeamSite Templating GUI.

• Creates, changes, or deletes a file, TeamSite area, or branch containing extended attributes
through the command line.

• Creates, changes, or deletes a file, TeamSite area, or branch containing extended attributes
through the TeamSite file system interface.

The following table summarizes DAS deployment support for various types of tuples:

Source Narrow Tuples WideTuples Tuples Mapped to User-
Defined Database Schemas

Data content records Not applicable Supported Supported

Extended attributes Not supported Supported Not supported
171

Automating Deployment with DAS
DAS deploys by running DataDeploy as a daemon, and by using various TeamSite events as triggers to
initiate deployment. You cannot use DAS when using a three-tier architecture, as described on
page 18 and on page 175. The following sections describe how to configure and run DAS.

DAS , The Event Server, and Internationalization

The Event Server is a component of TeamSite that, among other advantages, enables you to filter the
events that DAS receives. The ability to filter events greatly improves the scalability and reliability of
DAS. For details about using DAS with the Event Server, see Appendix C, “Event Server.”

If you operate DAS in a non-US English environment, you must use DAS with the Event Server. For
details about Internationalization, see Appendix D, “Internationalization.”

Software Requirements

To use DAS, you must first install and configure the following Interwoven products:

• TeamSite (see the TeamSite Administration Guide)

• DataDeploy (described earlier in this manual)

Note: If TeamSite Templating is not installed and configured for the area being deployed, only
metadata is sent. TeamSite also refers to metadata as extended attributes.

DAS Program and Configuration Files

The files listed in the following table control the operation of DAS. These files are installed
automatically when you install DataDeploy, with the exception of iw.cfg, daemon.cfg and
ddcfg.template.

Note: iw.cfg is installed with TeamSite. In order to avoid overwriting existing daemon.cfg and
ddcfg.template files, the DataDeploy installation procedure creates
daemon.cfg.example and ddcfg.template.example files. If you are performing a
first-time installation, rename these files by removing the .example suffix.
172 DataDeploy Administration Guide

DAS Program and Configuration Files
See the sections following the table for configuration instructions.

File Location Description

daemon.cfg dd-home/conf Configuration file used by the DataDeploy daemon for
start-up. You do not need to configure daemon.cfg
before running DAS. However, you can optionally add
<allowed-hosts> and <bind> tags to daemon.cfg
to further control access to the database server. See
Item 16 in “Sample File Notes”for more information.

ddcfg.template dd-home/conf Template DataDeploy configuration file used by
ddgen.ipl as a basis for creating all the working
DataDeploy configuration files for data types. You must
configure ddcfg.template as described in “Editing
ddcfg.template and drop.cfg” on page 175 before
running DAS.
Note: The <database> definitions in DataDeploy
configuration files are now located in a single file,
database.xml.

ddcfg_uds.template dd-home/conf Template DataDeploy configuration file used to deploy
data to user-defined schemas.
Note: The <database> definitions in Datadeploy
configuration files are now located in a single file,
database.xml.

ddcfg_uds.custom.
template

dd-home/conf Template DataDeploy configuration file used to deploy
data from custom DCRs to user-defined schemas.
Note: The <database> definitions in Datadeploy
configuration files are now located in a single file,
database.xml.

ddgen.ipl dd-home/bin DataDeploy configuration file generator. You do not
need to configure ddgen.ipl before running DAS.
Contact Interwoven before attempting to modify
ddgen.ipl.

drop.cfg dd-home/conf Utility configuration file used by the DataDeploy
daemon when dropping tables. You must configure
drop.cfg as described in “Editing ddcfg.template and
drop.cfg” on page 175 before running DAS.
173

Automating Deployment with DAS
Configuring DAS

You must perform the following steps to configure DAS following a DataDeploy installation:

• Edit the main TeamSite configuration file, iw.cfg.

• Edit configuration files that are specific to DataDeploy.

• Run the main DataDeploy configuration script, iwsyncdb.ipl.

The following subsections describe these steps in detail.

Note: If you wish to deploy to a Microsoft SQL Server database using the JDBC-ODBC bridge, you
must also create a Data Source Name (DSN) on your Windows machine for the Microsoft
SQL Server database. (See your operating system documentation for details about creating a
DSN.) In addition to creating a DSN, ensure that the value of the <database> element’s db
attribute in DataDeploy configuration files is equal to the DSN.

Editing DataDeploy Configuration Files

This section describes how to configure the ddcfg.template, drop.cfg, and iwsyncdb.ipl
files with your site-specific information.

iwsyncdb.cfg dd-home/conf Configuration file for iwsyncdb.ipl. Controls name
and port number for the DataDeploy daemon host.
Also controls DataDeploy event logging. See “Editing
iwsyncdb.cfg” on page 175 for more information.

iwsyncdb.ipl dd-home/bin TeamSite event trigger program and CLT. You do not
need to configure iwsyncdb.ipl before running
DAS. Contact Interwoven before attempting to modify
iwsyncdb.ipl.

iw.cfg /etc
(on Solaris)
iw-home/etc
(on Windows)

Controls whether renaming, moving, or deleting files
will trigger deployment. See “Editing iw.cfg” on
page 176 for more information.

File Location Description
174 DataDeploy Administration Guide

Configuring DAS
Editing ddcfg.template and drop.cfg

You must set the following attributes in each <database> element in ddcfg.template and
drop.cfg as described item 11 on page 121 in the “Sample File Notes” section.
• db

• user

• password

• vendor

For example, the following settings in ddcfg.template cause DataDeploy to connect to the Sybase
SQL Anywhere database server as marketing (using the password al450) and deploy data to the
marketingdb database on port 1521 of the server dbserver1:

<database name = "myproductiondb"
db = "localhost:2638"
user = "marketing"
password = "al450"
vendor = "SYBASE" >

Note: Do not edit the name attribute.

You must configure these settings within each occurrence of the <database> element. For
example, if the <database> element occurs four times in ddcfg.template, you must
configure these settings identically in all four locations. The same requirement applies to
drop.cfg. You must reconfigure these settings in both files whenever you change a database,
user, or password.

Editing iwsyncdb.cfg

The dd-home/conf/iwsyncdb.cfg file controls the following DataDeploy parameters:

Parameter Setting in iwsyncdb.cfg

DataDeploy daemon host port number (host name is set
automatically to the local host name of the TeamSite
server).

Set daemon_port=number. For
example, to set the port number to 3456,
enter daemon_port=3456

Logging of DataDeploy events. Set suppress_log=yes to disable
logging. Set to no to enable logging.
175

Automating Deployment with DAS
Editing iw.cfg

You must edit the [iwserver] section of /etc/iw.cfg as follows to support DAS recognition of
TeamSite events. Once configured, DAS will support these events whether they are initiated from the
TeamSite GUI, the TeamSite file system interface, or the command line (through standard operating
system commands or TeamSite command-line tools such as iwextattr).

Running iwsyncdb.ipl

This section describes how to run the iwsyncdb.ipl script, which performs the following activities:

• Generates DataDeploy configuration files for use by the DataDeploy daemon.

• Submits the generated DataDeploy configuration files to the staging area and publishes an edition
based on the updated staging area.

• Establishes TeamSite events as triggers for automatic data deployment.

• Starts the DataDeploy daemon.

• Creates initial base and delta tables in the destination database for the updated TeamSite areas.

The following subsections and diagrams explain these activities in detail.

Starting iwsyncdb.ipl

Enter the following command to start the iwsyncdb.ipl script:
dd-home/bin/iwsyncdb.ipl -initial workarea_vpath

For workarea_vpath, specify the full vpath to the TeamSite Templating workarea that was set up
earlier as described in Step 1 of “Copying the Example Directory Structure” in the “Initial

TeamSite Event Setting in iw.cfg

Delete a file. log_syncdestroy=yes

Revert a file containing extended attributes to an earlier version. log_syncrevert=yes

Rename/move a file. log_renamefse=yes

Move a file. log_renamefse=yes

Set extended attributes on a file. log_setea=no

Delete extended attributes from a file. log_deleteea=no
176 DataDeploy Administration Guide

Configuring DAS
Configuration” chapter of the TeamSite Templating Developer’s Guide. For example, you would enter the
following if the TeamSite Templating subbranch b1 and workarea w1 are on the default/main
branch, and dd-home is /usr/iw-home/datadeploy:

/usr/iw-home/datadeploy/bin/iwsyncdb.ipl -initial /default/main/b1/WORKAREA/w1

iwsyncdb.ipl Activities

The following figures show the activities that take place when iwsyncdb.ipl runs. Activities are
grouped as follows:

• Figure 1: Generation of DataDeploy Configuration Files

• Figure 2: Other DAS Setup Activities

All of the activities shown in Figures 1 and 2 occur when you enter iwsyncdb.ipl on the command
line. You do not need to execute iwsyncdb.ipl a second time to initiate the activities shown in
Figure 2.
177

Automating Deployment with DAS
Generation of DataDeploy Configuration Files
The following figure shows how DataDeploy configuration files are generated, submitted, and
published when the iwsyncdb.ipl script runs. See the diagram key following the diagram for details
about each step. Ensure that you read the note that follows the diagram key; this note describes what
to do if iwsyncdb.ipl generates DataDeploy configuration files but fails to connect to your
database.

Figure 1: Generation of DataDeploy Configuration Files

ddgen.ipl script

• Reads
datacapture.cfg
for each data type

• Reads
ddcfg.template

• Creates
DataDeploy
configuration files
based on
datacapture.cfg
and
ddcfg.template

Command Line
• User issues
iwsyncdb.ipl
-initial
command

ddcfg.template file
• Used as base

format for
DataDeploy
configuration
files generated
by ddgen.ipl

TeamSite GUI
• DataDeploy

configuration
files
submitted

• Edition
published

DataDeploy
configuration file

X_dd.cfg

datacapture.cfg for
data type X

datacapture.cfg for
data type Y

datacapture.cfg for
data type Z

DataDeploy
configuration file

Y_dd.cfg

DataDeploy
configuration file

Z_dd.cfg

3

1

2

4 5
178 DataDeploy Administration Guide

Configuring DAS
Figure 1 Key

1. The iwsyncdb.ipl -initial command is executed from the command line as described in
“Starting iwsyncdb.ipl” on page 176. The iwsyncdb.ipl script starts the ddgen.ipl script.

2. The ddgen.ipl script reads the TeamSite datacapture.cfg file for each data type that exists
in workarea_vpath specified in Step 1. For example, if the TeamSite Templating directory in
workarea_vpath contains the data types X, Y, and Z, ddgen.ipl reads the datacap-
ture.cfg file corresponding to each data type.

See “Configuring the Example Templating Environment” in the TeamSite Templating Developer’s
Guide for details about data types and the datacapture.cfg file.

3. The ddgen.ipl script uses ddcfg.template as the base format of the DataDeploy configura-
tion files that it will generate for each data type.

4. Based on ddcfg.template and the datacapture.cfg files for each data type, ddgen.ipl
creates DataDeploy configuration files for each data type. Continuing with the example from Step
2, ddgen.ipl creates DataDeploy configuration files X_dd.cfg, Y_dd.cfg, and Z_dd.cfg.
These configuration files configure a TeamSite-to-database deployment similar to the one
described in “Sample TeamSite-to-Database Configuration File” on page 109. The mdc_dd.cfg
file is also created to ensure that DataDeploy remains synchronized with other TeamSite features
such as metadata capture and metadata search.

5. The newly generated DataDeploy configuration files are submitted to the staging area, and an edi-
tion based on the updated staging area is published.

Note: If iwsycndb.ipl succeeds in generating DataDeploy configuration files for the data types
(data_type_dd.cfg), but fails to connect to your database, the following problem will
occur: Changes to the vendor attribute or to other <database> attributes in the
ddcfg.template file will not be propagated to the data_type_dd.cfg files.

If this occurs, you must edit all data_type_dd.cfg files or you must use the -force
option of iwsyncdb.ipl to overwrite the data_type_dd.cfg files.

Other DAS Setup Activities
The following figure shows how the remaining DAS setup activities take place when the
iwsyncdb.ipl script runs. See the diagram key following the diagram for details about each step.
179

Automating Deployment with DAS
Figure 2: Other DAS Setup Activities

Figure 2 Key

6. The iwsyncdb.ipl script registers a default set of TeamSite events as triggers that will automat-
ically initiate deployment. See “TeamSite Event Triggers” on page 185 for details about which
events are registered as triggers.

7. The iwsyncdb.ipl script starts the DataDeploy daemon.

8. The DataDeploy daemon reads the daemon.cfg file, which contains additional daemon startup
information. The daemon finishes its startup, and runs continuously until DAS is disabled as
described in “Disabling DAS” on page 188.

Command Line
• iwsyncdb.ipl
-initial
(continued)

DataDeploy
Daemon

• Reads
daemon.cfg for
startup
information

• Runs continuously
• Automatically

deploys data
when TeamSite
trigger events
occur

TeamSite Event
Subsystem

• TeamSite events
registered as
DataDeploy
triggers

daemon.cfg
• DataDeploy

daemon startup
information

6

87

RDBMS
9

180 DataDeploy Administration Guide

Using DAS
9. The DataDeploy daemon creates the following in the destination database:

– Initial wide base tables for the branch.

– Initial delta tables and views for the workarea.

DAS is now configured and ready for use. The only time you need to repeat any configuration step is
when you enable a different database, user, or password. If you add new templating branches,
workareas, or files through the TeamSite GUI, DAS automatically generates the necessary
DataDeploy configuration files and initial tables.

Using DAS

After DAS is configured, it is transparent to TeamSite templating end users. Therefore, there are no
additional tasks that an end user must perform to use DAS. The following diagram shows how DAS
automatically updates the necessary tables when a TeamSite trigger event occurs. See the diagram key
following the diagram for details about each step.

Figure 3: Using DAS

RDBMS

TeamSite GUI
• End user

activity
results in
TeamSite
trigger event

iwsyncdb.ipl script

• Receives and
interprets data
from TeamSite
trigger event

• Passes data to

DataDeploy
Daemon

• Determines which
DataDeploy
configuration file
to use 3

1

2

181

Automating Deployment with DAS
Figure 3 Key

1. TeamSite Templating end-user activity (that is, any activity shown in “TeamSite Event Triggers”
on page 185) results in a TeamSite event trigger. The event trigger starts the iwsyncdb.ipl
script and sends the changed data to the script.

2. The iwsyncdb.ipl script sends the data content record to the DataDeploy daemon. The daemon
determines which DataDeploy configuration file(s) to use for the deployment. For TeamSite
events (for example, Create Branch) that are not specific to a single file, the daemon uses the
templating.cfg file to determine which data types (and therefore which DataDeploy configu-
ration files) are affected by the TeamSite event. For example, in the case of a Create Branch
TeamSite event, the daemon reads templating.cfg to determine which data types exist in the
branch. The daemon then uses the DataDeploy configuration files for each affected data type when
deploying the new data to the database.

For events that are file-specific (for example, renaming a file), the daemon uses the information
from the TeamSite event information module to determine which file is affected and which
DataDeploy configuration file to use.

3. The daemon uses the appropriate DataDeploy configuration file(s) to update the affected base and
delta tables in the database. The following section, “Table Update Details” describes these updates.

Table Update Details

This section describes how the base and delta tables described in the preceding section change as data
is deployed. This example shows a hypothetical update to a data content record. In this example:

• The data category is internet.

• The data type is pr (press release).

• The branch is b1.

• The workarea is w1.

Specifying How Tables are Updated

You can specify how DataDeploy updates tables. DataDeploy can update tables in the following ways:

• By deleting existing rows and inserting new ones (default).
182 DataDeploy Administration Guide

Using DAS
• By executing a series of UPDATE SQL statements. That method is refered to as “real updates.”

Two attributes in the <database> element in DataDeploy configuration files enable you to specify
which kind of update you want DataDeploy to perform:

• enforce-ri

• real-update

See page 121, note 11 “Database section”, in the sample configuration file notes for details about how
to specify those attributes.

Notes: Do not modify fields that are mapped to key columns when you use real updates, because
relational databases do not allow the modification of values in DCRs that are mapped to key
columns (primary or foreign).

If you need to modify such fields, you must clear the value, then save and deploy the DCR.
Then insert the new value, save the DCR, and deploy it. Databases report constraint violation
errors if child tables reference the field values you are deleting. Therefore, you must also
delete the corresponding rows in child tables. To do that automatically, set the
ri-constraint-rule attribute to " ON DELETE CASCADE ". Recreate the rows when
you insert the new value for the parent table.

DATE, DATETIME, TIMESTAMP, CLOB, and BLOB data types are always updated regardless of
whether the data has been modified.

Table Naming Conventions

Base and delta tables use the following naming convention:

datacategory_datatype__branchname_areaname

This naming convention includes using double underscores (_+_) between
datacategory_datatype and branchname_areaname.
183

Automating Deployment with DAS
For example:

internet_pr__b1_staging (a base table for the staging area on the default/main/b1 branch)

internet_pr__b1_workarea_w1 (a delta table for the workarea w1 on the default/main/b1
branch)

Table Update Examples

When the initial wide base table is created as described in Figure 2, Step 9, it contains a Path column,
a State column, and columns for each item in the data content record. In this starting state, the table
does not yet contain any values. Assume that the first three items are PressDate, Headline, and
Picture. The resultant wide table will look like this:

Wide Base Table for Staging Area (Starting State)

When the initial delta table is created, it contains the same columns as the initial base table, in addition
to values for each item:

Delta Table for Workarea (Starting State)

Path State PressDate Headline Picture . . .

Path State PressDate Headline Picture . . .

mypath New 11/17/99 New Candidate Enters Race cand.gif ...
184 DataDeploy Administration Guide

TeamSite Event Triggers
When the data content record is submitted, its delta table values are transferred to the base table, and
its own cells are cleared, as shown in the following two tables:

Base Table for Staging Area (Ending State)

Delta Table for Workarea (Ending State)

TeamSite Event Triggers

DAS interprets the following TeamSite events as deployment triggers. The event can be initiated from
the TeamSite GUI, the TeamSite file system interface, or the command line. Whenever one of these
events occurs, the delta and base tables are updated as shown:

TeamSite Event Delta Table Action Base Table Action

Create Branch None. Build empty base tables.

Create Workarea Build delta tables. None.

Delete Branch Delete delta tables. Delete base tables.

Delete Workarea Delete delta tables. None.

Modify data content record Update or insert a new row. None.

Add data content record Insert a new row. None.

Delete data content record Insert or update the Not Present row. None.

Path State PressDate Headline Picture . . .

mypath New 11/17/99 New Candidate Enters Race cand.gif ...

Path State PressDate Headline Picture . . .
185

Automating Deployment with DAS
Submit modified data
content record

1. The Previous Staging row is
propagated to all workareas except the
submitting workarea.
2. Delete Previous Staging row from
submitting workarea.

Update the Staging row.

Submit added data content
record

1. The Placeholder row marked NOT-
PRESENT is propagated to all
workareas except the submitting
workarea.
2. Delete the Placeholder row from
the submitting workarea.

Update the Staging row.

Submit deleted data content
record

1. The previous Staging row is
propagated to all workareas except the
submitting workarea.
2. Delete the previous Staging row
from the submitting workarea.

Update the Staging row.

Get Latest (workarea) Rebuild the delta tables. None.

Copy To (any area) Rebuild the delta tables. None.

Rename Workarea 1. Delete the old delta tables.
2. Regenerate new delta tables.

None.

Rename Branch None. 1. Delete the old base tables.
2. Regenerate new base
tables.

Rename Directory Regenerate new delta tables. None.

Rename File 1. Delete the row for the old file
name.
2. Add a row for the new file name.

None.

Move File 1. Delete the row for the old file
name.
2. Add a row for the new file name.

None.

TeamSite Event Delta Table Action Base Table Action
186 DataDeploy Administration Guide

Logging DAS Activities
Logging DAS Activities

By default, all DAS activities are recorded in dd-home/iwevents.log. If updates to this file
degrade system performance, you can turn off logging for any of the TeamSite events shown in the
table in “Editing iw.cfg” on page 176. Use the following event names when you disable logging:

• RenameFSE

• SyncDestroy

• SetEA

• DeleteEA

• SyncRevert

For example, to prevent Rename events from being recorded, set the following in iw.cfg:

iwevents_exclude="RenameFSE"

You can also use regular expressions with the following syntax to further control event logging:

renamefse_filter="REGEX"

Delete File If a row for the file exists in the base
table, the row in the delta table is
marked NOT-PRESENT. If no row
existed in the base table, the row in the
delta table is deleted.

None.

Set extended attributes Insert or update the row. None.

Delete extended attributes In a wide table, rows are updated. In a
narrow table, the row is deleted or
marked NOT-PRESENT.

None.

Revert Use the data from the earlier version of
the file (selected in the TeamSite
graphical user interface) to update or
insert a new row.

None.

TeamSite Event Delta Table Action Base Table Action
187

Automating Deployment with DAS
For example, to specify that only Rename events occurring in the workarea bill are logged:

[iwserver]
renamefse_filter="/default/main/WORKAREA/bill"

This entry sets regular expressions, one of which must match the event line (as seen in
iwevents.log) in order for an event to be logged. If these are empty or absent, all corresponding
events are logged.

Disabling DAS

Issue the following command to remove the TeamSite event trigger scripts and stop the DataDeploy
daemon:

dd-home/bin/iwsyncdb.ipl -uninstall

To re-enable DAS after it has been disabled, issue the following command:

dd-home/bin/iwsyncdb.ipl -install

Note that you do not need to regenerate the datacapture.cfg files that were generated earlier
during DAS configuration. See the next section, “iwsyncdb.ipl Usage,” for more information about
the iwsyncdb.ipl command.
188 DataDeploy Administration Guide

iwsyncdb.ipl Usage
iwsyncdb.ipl Usage

Usage
iwsyncdb.ipl [

-h | -install | -uninstall | -iwat | -iwrmat |
-startddd | -stopddd | -ddgen vpath [dcr-type] [-force] |
-dbschemagen vpath [dcr-type] [-force] |
-initial vpath [dcr-type] | -mb | -mdcddgen [-force] |
-mdcdbschemagen [-force] | -resyncbr vpath [dcr-type] |
-resyncwa vpath [dcr-type] | -rmbr vpath [dcr-type] |
-rmwa vpath [dcr-type] | -rowmapgen configfile
 deployment outputfile | -showbase vpath [dcr-type] |
-showdelta vpath [dcr-type] |-showtracker |
-synctracker vpath| -validate vpath [dcr-type] |
-validate dbschema_file_name
]

Option Description

-install Installs the database synchronization triggers and starts the
DataDeploy daemon.

-uninstall Removes the TeamSite event trigger scripts and stops the
DataDeploy daemon.

-iwat Registers the iwsyncdb trigger scripts.

-iwrmat Unregisters the iwsyncdb trigger scripts.

-startddd Starts the DataDeploy daemon.

-stopddd Stops the DataDeploy daemon.

-ddgen vpath [dcr-type] Generates DataDeploy configuration files for data types
configured in iw-home/local/config/
templating.cfg under the specified workarea vpath.
The -force option overwrites any existing configuration
files. The optional dcr-type setting specifies creation of a
configuration file for a single data type (rather than all data
types in vpath).
189

Automating Deployment with DAS
-dbschemagen vpath [dcr-
type]

Generates DataDeploy dbschema.cfg files for data types
configured in iw-home/local/config/
templating.cfg under the specified workarea vpath.
The -force option overwrites any existing configuration
files. The optional dcr-type setting specifies creation of a
configuration file for a single data type (rather than all data
types in vpath).

-initial vpath [dcr-type] Generates the initial base and delta tables for the first
template-enabled workarea vpath. The optional dcr-type
setting specifies creation of tables for a single data type
(rather than all data types in vpath).

-mb Encodes all configuration files it generates as UTF-8,and
enables all other iwsyncdb.ipl options that use Vpath
arguments to be processed by a Java equivalent of
iwsyncdb.ipl. DataDeploy supports an -mb options when
running iwsyncdb.ipl.

-mdcddgen Generates the DataDeploy configuration file mdc_dd.cfg
(based on iw-home/local/config/datacapture.cfg)
for use by the metadata capture subsystem. The -force
option overwrites any existing configuration files.

-mdcdbschemagen Generates the DataDeploy database schema file iw-home/
local/config/dbschema.cfg (based on iw-home/
local/config/datacapture.cfg) for use by the
metadata capture subsystem. The -force option overwrites
any existing dbschema.cfg files.

-resyncbr vpath [dcr-type] Regenerates the base tables for the branch named by vpath
and the delta tables for the underlying workareas. The
optional dcr-type setting specifies resynchronization of
tables for a single data type (rather than all data types in
vpath). Run iwfreeze to freeze the backing store before
regenerating.

-resyncwa vpath [dcr-type] Regenerates the delta tables for the workarea vpath. The
optional dcr-type setting specifies resynchronization of
tables for a single data type (rather than all data types in
vpath). Run iwfreeze to freeze the backing store before
regenerating.

Option Description
190 DataDeploy Administration Guide

iwsyncdb.ipl Usage
-rmbr vpath [dcr-type] Deletes the base tables for the branch named by vpath. The
optional dcr-type setting specifies deleting the base table
for a single data type (rather than all data types in vpath).

-rmwa vpath [dcr-type] Deletes the delta tables for the workarea named by vpath.
The optional dcr-type setting specifies deleting tables for a
single data type (rather than all data types in vpath).

-rowmapgen configfile
deployment outputfile

Generates row map cache files. The configfile setting
specifies the name of the DataDeploy configuration file,
which can be a standalone configuratin file or one that is
generated by running -intitial or -ddgen. The
deployment setting specifies the name of the deployment
you want to use to generate the row map. The outputfile
setting specifies the full path where you want to write the
file. Row map cache files can be located in any location that
DataDeploy can access during deployments. If the file already
exists, it is overwritten.

Example:
-rowmapgen medical_dd.cfg basearea /usr/
iw-home/datadeploy/conf/medical_rowmap.dat

-showbase vpath [dcr-type] Shows the base table of the data content record for the
specified base path (for example, /default/main/br/
STAGING). The optional dcr-type setting specifies
displaying a single data type.

 -showdelta vpath [dcr-
type]

Shows the delta table of the data content record for the
specified workarea path (for example, /default/main/
br/WORKAREA/wa). The optional dcr-type setting
specifies displaying a single data type (rather than all data
types in vpath).

-showtracker Shows the tracker table containing all registered tables
deployed by DataDeploy.

-synctracker vpath Synchronizes the tracker table for the area named by vpath.
You must execute this option after upgrading from a release
of DataDeploy earlier than 4.5.

Option Description
191

Automating Deployment with DAS
 -validate vpath [dcr-
type]

Validates dbschema.cfg files for data types configured in
iw-home/local/config/templating.cfg under the
specified workarea vpath. The optional dcr-type
argument specifies that the iwsyncdb.ipl command will
validate a single data type's dbschema.cfg file (rather than
all data types' dbschema.cfg files under vpath). If a
particular data type does not have a dbschema.cfg file,
that type is skipped and no errors are generated.

-validate
dbschema_file_name

Validates the specified dbschema_file_name. The
dbschema_file_name argument must specify a complete
path to a file that contains the <dbschema> element.

Option Description
192 DataDeploy Administration Guide

Appendix A

Database Server
Configuration

Overview

This appendix describes the database server configuration tasks you must perform to configure the
following databases to work with DataDeploy:

• IBM DB2 (UDB) 7.1

• Sybase ASE 11.5

• Informix 7.3

IBM DB2

DataDeploy supports IBM DB2 UDB 7.1 on Windows and Solaris systems. The following sections
describe how to configure the database server to work with DataDeploy.

Setting Page and Table Sizes

The default pagesize for a tablespace in DB2 is 16K, which is too small for the examples shipped with
TeamSite Templating (the examples require that a tablespace of pagesize 32K be already set up on the
DB2 server). Also, the default column size and data type used by DataDeploy is VARCHAR (255).
These conditions require that you perform one of the following procedures:

1. Make sure that the default tablespace matches the required pagesize (32K). The default tablespace
is usually named IBMDEFAULTGROUP. Or:
193

Database Server Configuration
2. Create a tablespace with the required pagesize (32K) and specify the tablespace name as follows in
the <database> element in the DataDeploy configuration file:
<database db = "//host:port/database"

user = "username"
password = "password"
table = "tablename"
vendor = "ibm"
tablespace = "tablespacename"
max-id-length = "anylength">

The tablespace attribute is valid only for DB2 configuration. It is ignored if you set it when using
any other database.

Installing and Starting JDBC

DB2 does not start the daemon to accept JDBC connections by default. You must do this manually by
executing the following command:
db2jstrt port

The port number you enter on the command line must match the port number shown in the db
attribute in “Setting Page and Table Sizes” on page 193. If you do not specify a value for port, it takes
a default value of 6789.

Sybase ASE

DataDeploy supports Sybase ASE 11.5 on Windows NT, Windows 2000, and Solaris systems. The
following sections describe how to configure the database server to work with DataDeploy.

Enabling DDL Statements

You must enable DDL statements for transactions as follows. Note that this cannot be done for the
master db.

 1> sp_dboption dbname, "ddl in tran", true
194 DataDeploy Administration Guide

Informix
Setting Sort Order

Set up case-insensitive sort order for the database by executing the $SYBASE/bin/sqlloc utility to
set case-insensitive dictionary order. You will also need to recreate indexes on the database that was
changed, unless the sort order was changed on initial installation.

Install Stored Procedures

Install jconnect 4.2 stored procedures as follows:

1. Download the jConnect 4.2 package from the Sybase website.

2. Follow the instructions in the “Sybase jConnect for JDBC Installation Guide,” Chapter 1, section
“Adaptive Server Enterprise” to install the stored procedures for JDBC support into the database.

Informix

DataDeploy supports Informix 7.3 on Windows NT systems, Windows 2000, and Solaris systems.
The following sections describe how to configure the database server to work with DataDeploy.

Enabling Logging

Any databases created for use with Informix must be created with logging enabled. This can be
accomplished with the Informix tool dbaccess, using an SQL command such as the following:

create database xyzdb with log
195

Database Server Configuration
196 DataDeploy Administration Guide

Appendix B

Querying Tables

This appendix describes how to query tables through SQL commands that you execute manually after
deployment. Methodology differs depending on table type.

Note: You can also embed SQL commands in the DataDeploy configuration file’s <sql> element.
These commands execute automatically during deployment and do not require you to
manually query the database. See “Invoking DataDeploy” on page 159 for more information.

Querying Base and Standalone Tables

You can use simple SQL statements specifying key-value pair criteria when querying a base or
standalone table. For example:
SELECT path FROM staging

WHERE key = News-Section AND value = Sports;

Querying Delta Tables

To query a delta table, you can first create a view consisting of a complex query and then apply a
simple query on the view. For example:
CREATE VIEW areaview (key, value, path) AS

SELECT key, value, path
FROM sa
WHERE NOT EXISTS

(SELECT *
FROM wa_x WHERE

wa_x.key = sa.key AND
wa_x.path = sa.path)

UNION
SELECT key, value, path
FROM wa_x WHERE wa_x.state != ’NotPresent’;

SELECT path FROM areaview
WHERE key = News-Section AND value = Sports
197

Querying Tables
The CREATE VIEW command in this example is the default DataDeploy schema that executes when
table-view is set to yes in the DataDeploy configuration file’s <database> element.
198 DataDeploy Administration Guide

Appendix C

Event Server

The Event Server component is packaged with TeamSite and provides an efficient, scalable platform
for delivering messages (events) to and from your content management applications. Such a platform
is a key part in automating content development and deployment tasks.

The Event Server employs advanced technology based on the following principles:

• Reliability — The Event Server stores and queues events, preventing their loss.

• Flexibility — The Event Server enables you to filter events so that applications receive only the
ones they need. Additionally, the Event Server is based on Java™ Messaging Service (JMS), a
standard API for message delivery.

• Performance — The Event Server’s publish-and-subscribe model offers significant performance
improvements over the event delivery models used in previous releases that required TeamSite to
spawn new processes for each event. Depending on your JMS implementation, asynchronous
communication, thread pooling, and database connection pooling also contribute to fast and
flexible performance.

Note: If you want to use DAS in a non-U.S. English environment, DAS must use the Event Server.

How the Event Server Works

The Event Server uses the JMS model of message delivery. That model is based on three key concepts:

• Events — Synonomous with message. Events are the result of changes, end-user actions, or
occurences in a Publisher program. For example, TeamSite server events include (but are not
limited to):
– CreateBranch

– Submit

– SyncDestroy
199

Event Server
For a list of TeamSite events see “TeamSite Event Triggers” on page 185.

Events have names and properties, such as user, role, and timestamp, that are represented in
the Event Server as attribute/value pairs.

Some applications can be configured to perform functions when an event in a different application
is triggered. For example, DataDeploy can be configured to run DAS when end users submit
content to TeamSite staging areas.

• Publishers — Applications that send events to the Event Server. The Event Server then passes the
events to Subscribers that have registered to receive them.

• Subscribers — Applications that register with the Event Server to receive events. Subscribers can
filter events so that they receive only the ones they need.

The following illustrates how the Event Server works (grey items will be supported in future
releases):

Supported Applications

This release supports TeamSite as an event Publisher and DataDeploy as a Subscriber. Future releases
will support the use of other Interwoven products with the Event Server.

JMS Implementation

JMS APIOther Event
Publishers

TeamSite

Publishers

Server

Subscribers

DataDeploy
(DAS)

Other
Interwoven
products

Event Server

ProxyServlet

(OpenJMS is the default)

TeamSite
Templating
200 DataDeploy Administration Guide

Supported Databases
Supported Databases

Interwoven supports the use of DAS with the Event Server when deploying content to the following
databases:

• Microsoft SQL Server™

• Sybase® SQL Anywhere®

• Oracle® 8i

Prerequisites

Meet the following prerequisites before using the Event Server:

• TeamSite 5.5 or greater is installed and properly licensed.

• DataDeploy 5.5.1 is installed on the same system where TeamSite is installed.

• DataDeploy is configured to use DAS.

• JDBC 2.0 compatible driver.

Note: Use JDBC type 4 drivers from i-net software if you are using Microsoft SQL Server 2000. The
i-net driver is packaged with DataDeploy and is located in dd-home/lib/UNA2000.jar.

Installing and Enabling the Event Server

The Event Server component is installed with TeamSite.

To enable the Event Server:

1. Open iw-home/etc/iw.cfg in a text editor of your choice (WordPad is recommended).

2. Find the [event_subsystem] section and add the following line:

es_enable=true

Note: It is important that the value is “true” and not “yes”.
201

Event Server
Configuring the Event Sever to Work with DAS

To configure the Event Server to work with the DataDeploy DAS module, do the following:

• Enable the Event Server.

• Set up a database for event persistence.

• Set up Event filters (optional).

Setting Up a Database for Event Persistence

Event persistence must be managed by a RDBMS.

To set up RDBMS-based persistence:

1. Copy:
iw-home/eventsubsystem/conf/jmsconfig_rdbms.xml.example

to:
iw-home/eventsubsystem/conf/jmsconfig.xml.

2. In the <DatabaseConfiguration> section of that file, remove the comment tags from the
RdbmsDabaseConfiguration section that corresponds to the RDBMS that you want to use.

Here is an excerpt that shows the commented RdbmsDabaseConfiguration section for the
Sybase SQLAnywhere database:

<!-- Sybase SQLAnywhere example
 <RdbmsDatabaseConfiguration
 driver="com.sybase.jdbc2.jdbc.SybDriver"
 url="jdbc:sybase:Tds:localhost:2638"
 userName="dba"
 password="sql"
 retries="5"
 timeout ="2000" />
-->

Change the values for the driver, url, username, and password attributes according to your
needs.

For the complete jmsconfig_rdbms.xml.example file, see page 207.
202 DataDeploy Administration Guide

Configuring the Event Sever to Work with DAS
3. Set the jdbc_classpath variable in the following file to the location of your database vendor’s
JDBC driver:

iw-home/eventsubsystem/conf/eventsubsystem.properties file

Examples:

(Windows) jdbc_classpath=c:\\drivers\\sybase\\lib\\SybDriver55.jar

(Solaris) jdbc_classpath=c:/var/iw-home/datadeploy/lib/SybDriver55.jar

4. Create and register database tables before you start the Event Server. A number of SQL scripts that
enable you to create and register the tables are included with DataDeploy and are located in:

iw-home/eventsubsystem/conf/ddl/create_dbvendor.sql.

Run the script that corresponds with the database you want to use. You can execute the SQL script
using a client utility supplied by the database vendor. For example, if you are using an Oracle
database, use SQL*Plus. If you are using Microsoft SQL Server, use Query Analyzer.

5. Start the Event Server.

– (Windows) Select Control Panel > Services > InterwovenEventSubsystem.

– (Solaris) Run the iw-home/private/bin/iweventsubd script.

6. Restart JmsProxyServlet to ensure that the servlet engine starts publishing to the Event Server.

% iwreset

% iwreset -ui
203

Event Server
Setting Up Event Filters for DAS

You can set up filters so that DAS receives only the TeamSite events that you want it to receive.
Specify event filters in dd-home/conf/daemon.cfg.

DataDeploy translates the filtering criteria you specify into an SQL statement which it uses to
subscribe to the Event Server for TeamSite events.

If no filters are specified, DAS automatically implements a timestamp filter based on the time that
DAS started. That is, if no filters have been established and DAS is started, DAS receives all events
published since it was started and ignores all previous events.

For details about the dd-home/conf/daemon.cfg file, see “DAS Program and Configuration Files”
on page 172.

For a list of TeamSite events, see “TeamSite Event Triggers” on page 185.

Sample Filter Section in daemon.cfg

The following is a sample filter:

<filter name="EventsFilter">
<keep>
<and>

 <!-- <field name="timestamp" format="notused" match="now" />
-->
<field name="timestamp" format="mm-dd-yyyy hh:mm:ss" match="08-01-

2001
10:30:00" />

<in>
<field name="name" match=" ('Submit', 'CreateWorkarea',

'SyncCreate',
'DestroyWorkarea')" />

</in>
<or>

<like>
<field name="user" match="_ob" />

</like>
<or>
204 DataDeploy Administration Guide

Configuring the Event Sever to Work with DAS
<field name="role" match="master" />
</or>

</and>
</keep>

<discard>
<and>

<like>
<field name="area" match="%default%" />

</like>
</and>

</discard>
</filter>

Note the <keep> and <discard> sections in the sample filter above. Those sections contain the
filtering criteria. The <keep> section contains the rules for filtering events that must be processed by
DAS. The <discard> section contains the rules for filtering events that do not need to be processed
by DAS.

Both sections can contain the following subsections that represent boolean and SQL operators:

• <and> — Events that satisfy all criteria listed in this section are kept (or discarded if used in the
<discard> section).

• <or> — Events that satisfy at least one of the criterion listed in this section are kept (or discarded
if used in the <discard> section).

• <in> — Used to create a list-based criterion. Events that match at least one of the listed items
satisfies the criterion. For example, the sample filter shown above keeps any of the following
events would satisfy the <in> criterion: Submit, CreateWorkarea, SyncCreate, or
DestroyWorkarea.

• <notin> — Used to create a list-based criterion for events that are to be excluded. Do not use
<notin> in a <discard> section; use <in> there instead.
205

Event Server
• <like> — Used to create a wildcard-based criterion. You can use the following wildcard
characters when specifying the value for the match attribute in <like> and <notlike>
subsections:

– The % character is used to represent any sequence of characters

– The _ character is used to represent any single character.

For example, note the <like> subsections in the sample filter shown above:

Only a three character user name where the last two characters are ob would satisfy the first
<like> criterion, and a TeamSite area name of any length that includes the string default
would satisfy the second <like> criterion.

• <notlike> — Used to create a wildcard-based criterion for events that are to be excluded. Do
not use <notin> in a <discard> section; use <like> there instead.

Each section (or subsection) must contain at least one name and match attribute/value pairs. The
name attribute refers to the property name. The value of the match attribute specifies the
characteristics of the property that you want to use as a filtering criterion.

DataDeploy would translate that filter into the following SQL statement:

(timestamp > 1004050050851 and name IN ('Submit', 'CreateWorkarea', 'SyncCreate',
'DestroyWorkarea') and user like '_ob' or role = 'master' and area NOT LIKE
'%default%')

A Note About Filtering Events by Timestamp

By default DAS ignores all events published prior to its start time. If you want DAS to receive events
that were published before it was started, establish a timestamp filter. Specify the time from which
you want events in the match attribute of the field element. For example, assume that DAS was
started on 08/02/2001. Using the sample filter above, DAS would receive events published on and
after 10:30:00 the previous day.

Another way to ignore events published before DAS is started is to specify the format and match
attributes as notused and now, respectively. See the commented timestamp field in the sample filter
above for an example.
206 DataDeploy Administration Guide

The jmsconfig_rdbms.xml.example File
The jmsconfig_rdbms.xml.example File

It is recommended that you do not edit the portions in gray.

<?xml version="1.0"?>
<JmsConfiguration>
 <ServerConfiguration
 serverClass="org.exolab.jms.server.mipc.IpcJmsServer"
 jmsServerName="OpenJmsServer"
 serverPort="3030"
 serverAddress="localhost" />

 <LoggerConfiguration
 type="ConsoleLogger"
 fileName="openjms.log"
 logLevel="debug" />

 <LeaseManagerConfiguration
 sleepTime="300" />

 <RmiRegistryConfiguration
 embeddedRegistry = "false"
 rmiRegistryPort = "1099" />

 <JndiClientConfiguration
 contextFactory="org.exolab.jms.jndi.mipc.IpcJndiInitialContextFactory">
 <JndiContextFactoryProperty property="org.exolab.jms.jndi.port"
 type="integer" value="3035" />
 <JndiContextFactoryProperty property="org.exolab.jms.jndi.host"
 type="string" value="localhost" />
 </JndiClientConfiguration>

 <JndiServerConfiguration
 jndiServerClass="org.exolab.jms.jndi.mipc.IpcJndiServer"
 jndiServerName="JndiServer"
 jndiServerAddress="localhost"
 jndiServerPort="3035" />

 <ConnectionFactories>
 <ConnectionFactory
 jndiName="JmsQueueConnectionFactory"
 factoryClass="org.exolab.jms.client.JmsQueueConnectionFactory" />
 <ConnectionFactory
 jndiName="JmsTopicConnectionFactory"
207

Event Server
 factoryClass="org.exolab.jms.client.JmsTopicConnectionFactory" />
 </ConnectionFactories>

 <MessageManagerConfiguration maxThreads="10"
 destinationCacheSize = "1000"
 garbageCollectionInterval = "300"
 garbageCollectionThreadPriority = "5" />

 <DatabaseConfiguration
 databaseType="rdbms"
 garbageCollectionInterval="180"
 garbageCollectionBlockSize="500"
 garbageCollectionThreadPriority = "5" >
<!-- DB2 (app) setup example
 <RdbmsDatabaseConfiguration
 driver="COM.ibm.db2.jdbc.app.DB2Driver"
 url="jdbc:db2:<dbname>"
 ...

-->
<!-- DB2 (net) setup example
 <RdbmsDatabaseConfiguration
 driver="COM.ibm.db2.jdbc.net.DB2Driver"
 url="jdbc:db2:://<hostname>:<port>/<dbname>"
 ...

-->
<!-- MSSQL setup example
 <RdbmsDatabaseConfiguration
 driver="com.inet.tds.TdsDriver"
 url="jdbc:inetdae7:<hostname>:<port>?database=<dbname>"
 ...

-->
<!-- Oracle setup example
 <RdbmsDatabaseConfiguration
 driver="oracle.jdbc.driver.OracleDriver"
 url="jdbc:oracle:thin:@<hostname>:<port>:<dbname>"
 ...

-->
<!-- Sybase SQLAnywhere example -->
 <RdbmsDatabaseConfiguration
 driver="com.sybase.jdbc2.jdbc.SybDriver"
 url="jdbc:sybase:Tds:localhost:2638"
 userName="dba"
 password="sql"
 retries="5"
 timeout ="2000" />
208 DataDeploy Administration Guide

The jmsconfig_rdbms.xml.example File
 </DatabaseConfiguration>

 <AdminConfiguration
 jmsServer="bin\startjms"
 jmsConfig="conf\jmsconfig.xml"

onlineConnectionMode="org.exolab.jms.administration.mipc.IpcJmsAdminConnection"
 jmsAdminServerName="JmsAdminServer" />

 <AdministeredDestinations>
 <AdministeredTopic topicName="TeamSite_User" />
 <AdministeredTopic topicName="TeamSite_System" />
 <AdministeredTopic topicName="TeamSite_Workflow" />

 </AdministeredDestinations>
</JmsConfiguration>
209

Event Server
210 DataDeploy Administration Guide

Appendix D

Internationalization

DataDeploy is engineered with your global enterprise in mind. This includes internationalizing
DataDeploy to support multibyte languages and locales at the operating system, client, and data
management levels. Internationalized DataDeploy supports the following needs:

• Localized operating system—DataDeploy works with any one of the following localized operating
systems: English, French, German, and Japanese (one locale per instance of iwserver).

• Localized file names—You are no longer restricted to file and directory names in ASCII
character encoding. File and directory names can have Japanese names on Japanese
servers, German names on German servers, and French names on French servers.

• Continued support for processing of non-English metadata and TeamSite Templating content.

DataDeploy Configuration Files

All configuration files generated by DataDeploy are UTF-8 encoded. Ensure that you save those files
as UTF-8 if you edit them. On Windows systems, you can use Notepad or Wordpad to edit those files
because those text editors support opening and saving files that are UTF-8 encoded.

DAS in a Non-U.S. English Environment

You must configure DAS to use the Event Server if you want to use DAS in a multibyte environment.
See Appendix C, “Event Server” for details about how to use DAS with the Event Server.

OpenDeploy–DataDeploy Synchronization

OpenDeploy–DataDeploy synchronized deployments support multibyte Vpaths.
211

Internationalization
The -mb option for iwsycdb.ipl

DataDeploy supports an -mb option when running iwsyncdb.ipl. Use that option if you operate
DataDeploy in a non-U.S. English environment; it can also be used for U.S. English locales. The -mb
option does the following:

• Encodes all configuration files it generates as UTF-8.

• Enables all other iwsyncdb.ipl options that use Vpath arguments to be processed by a Java
equivalent of iwsyncdb.ipl.

Microsoft SQL Server

If you use DataDeploy with Microsoft SQL Server, note the following:

• Use nvarchar, nchar, and ntext instead of varchar, char, and text because Microsoft SQL
Server uses Unicode for storing data in n* data type columns.

• Override the CREATE TABLE statement and use the nvarchar data type for columns in the
IWTRACKER table. Refer to the following file for details:

dd-home/conf/create_table_overrides.xml.example

You can copy that file to:

dd-home/conf/create_table_overrides.xml

DataDeploy examines dd-home/conf/create_table_overrides.xml for an override
CREATE TABLE statement before it creates IWTRACKER, IWOV_IDMAPS, and IWDELTRACKER
tables. If one is not specified, DataDeploy uses varchar for text data type columns.

• You must use a case-insensitive and accent-insensitive Unicode collation when you create target
databases for deployment.

IBM DB2 Specific Information

The following information is applicable only for systems where the database codeset is different from
that of the operating system where the DB2 server is running.
212 DataDeploy Administration Guide

IBM DB2 Specific Information
DAS Mode

If you use DAS to deploy the files whose Vpaths contain multibyte characters, you must do one of the
following:

• Run the DB2 server on an operating sytem locale that is similar to the muliti-byte code set used to
create the target database.

• Set the DB2CODESET environment value to the muli-byte code set used to create the target
database. Consult page 241, Appedix D: National Language Support, of the DB2 Administration
Guide for details about how to set the DB2CODESET environment value.

Example

Scenario:

• DB2 is running on a US English Windows NT 4.0 platform.

• A database has been created where Japan is specified as the territory and IBM-943 as the code set.

• TeamSite, TeamSite Templating, and DataDeploy are all running on a Japanese language Windows
NT 4.0 platform.

• Vpaths of files targeted for deployments contain multibyte store, branch, and workarea names.

Solution:

Configure the DB2 server to use the code set 943 by running the following command:

db2set DB2CODEPAGE=943

Standalone Mode

You must set the DB2CODESET environment value to the muli-byte code set used to create the target
database to do any of the following:

• Specify table and column names that contain multibyte characters.

• Specify table and column names that do not contain multibyte characters and deploy multibyte
content stored in files targeted for deployment.
213

Internationalization
The DataDeploy Administration GUI
The DataDeploy administration graphical user interface (GUI) does not support multibyte characters.
It is recommended that you do not install the DataDeploy administration GUI on non-U.S. English
operating systems.

Test Environments
Interwoven has tested multibyte functionality in DataDeploy with the following database encodings
and locales:

Miscellaneous
DataDeploy can deploy multibyte content to databases that do not use multibyte character sets but
that do support multibyte data types for columns.

When viewing DataDeploy log files that have been created in a multibyte environment, ensure that
you use an appropriate text editor to view them.

Database Encoding or Locale

Oracle UTF-8. Deployed German and
French data.

CP1252 and UTF-8.

JA16EUC (Japanese character
set in Oracle).

Microsoft SQL Server 2000 CP1252 and UTF-8.

Deployed multibyte content to
nvarchar, nchar, and ntext
data types to a SQL Server 2000
U.S. English database

Tested German, French, and
Japanese collations.

DB2 CP1252 and UTF-8.

Tested German, French, and
Japanese collations.
214 DataDeploy Administration Guide

Index

A
administration GUI

multibyte support 214
allows-null attribute, the 135
architecture

three-tier 18
two-tier 18

attributes
allows-null 135
check-schema 129
commit-batch-size 128
custom, the 79
data-format 135
db 132
delete-tracker 127
drop-table 128
drop-table-prefix 127
drop-table-suffix 128
enforce-ri 125
is-replicant 135
is-url 91
log-level 127
name 134
name-from-field 134
real-update 126
replicant-order-number 92
ri-constraint-rule 125
row-map-cache-file 131
schema-helper-cache-size 130
schema-helper-cleanup 130

a

B
b

C
c
c
c
c
c

schema-helper-cleanup-
interval 130

state-field 125
update-type 125
use-oci 130
value 134
value-from-attribute 77
value-from-callout 84
value-from-element 77
value-from-field 134

uto-synchronization,
database 171

ase tables
configuring initial 155
generation 34
naming conventions 183
narow tuples 31
updating 36, 182

examples 184
wide tuples 32

heck-schema attribute, the 129
lient element 116
olumn element, the 84, 138
ommand line 23
ommands
iwdd.ipl, usage 159

c

c

c

iwsyncdb.ipl 189
overview 177
starting 176

SQL 197
ommit-batch-size attribute,

the 128
onfiguration
DAS 174
database servers 193
dbschema.cfg DTD 57
event filtering 204
event persistence 202
Event Server 202
Informix database 195
Sybase ASE 194

onfiguration files
allows-null attribute 135
attributes

value-from-callout 84
check-schema attribute 129
commit-batch-size

attribute 128
components 25
daemon.cfg 173
DAS 172
database element 124
database-to-database 143
database-to-XML 145

filtering 147
multiple tables 149
215

DataDeploy
attributes 77, 79

data-format attribute 135
db attribute 132
ddcfg.template 173
delete-tracker attribute 127
drop.cfg 173
drop-table attribute, the 128
drop-table-prefix attribute 127
drop-table-suffix attribute 128
elements 105

client 116
columns to update 138
database 121
Database-to-Database 107
Database-to-XML 107
data-deploy-elements 115
deployment 116
destination 120
external-tuple-

processor 93
filter 115
include file 115
rows to update 133
server 140
source 117
source data location 118
source type 117
SQL 138
substitution 115, 119
TeamSite-to-Database 106
TeamSite-to-XML 106
update type and related

data 137
XML-to-Database 108
XML-to-XML 108

enforce-ri attribute, the 125
Event Server 207
generated using

iwsyncdb.ipl 178

c

c
c

216
generating 177
is-replicant attribute 135
iw.cfg 174
iwsyncdb.cfg 174
log-level attribute 127
mdc_ddcfg.template 20
name attribute 134
name-from-field attribute 134
overview 25
parameter substitutions 109
real-update attribute 126
ri-constraint-rule attribute,

the 125
row-map-cache-file

attribute 131
schema-helper-cache-size

attribute 130
schema-helper-cleanup

attribute 130
schema-helper-cleanup-

interval attribute 130
select element 133
starting-state base table 155
state-field attribute 125
TeamSite-to-database 109
TeamSite-to-XML 141
update-type attribute 125
use-oci attribute 130
value attribute 134
value-from-field attribute 134
XML-to-database 151
XML-to-XML 153

onventions
naming tables 183
typographical and notation 9

ustom attribute, the 79
ustom DCRs, deploying 76

D
d

d
D

d

aemon 194
DataDeploy, the 19
for DAS operation 162

aemon.cfg 172
AS 23, 49, 172
configuration files 55, 172

attributes 77, 79
configuring 174
conventions 183
database element 124
DataDeploy daemon 162
dbschema.cfg

consistency rules 59
creating 74
DTD 57

deploying custom DCRs 76, 79
deploying metadata 80, 81
deployment process 55
disabling 188
Event Server

configuring 202
event triggers 185
filtering events 172, 204
internationalization 172, 213
logging 187
mdc_ddcfg.template 20
overview 49
rules for deployment 58
software requirements 172
table naming conventions 183
updating tables 182
usage 181

ata
deploying from external

source 81
enhancing before

deployment 93
DataDeploy Administration Guide

sizes 103
types 51, 103

data category 51
data content record 49

DAS 171
DAS process 55
deploying custom 76
deploying nested 131

Data Source Name 174
database

configuring servers 193
DAS

overview 171
dbschema.cfg DTD 57
destinations 29
drivers 132
object name lengths 103

database element attributes
check-schema 129
commit-batch-size 128
db 132
delete-tracker 127
drop-table 128
drop-table-prefix 127
drop-table-suffix 128
enforce-ri 125
log-level 127
real-update 126
ri-constraint-rule 125
row-map-cache-file 131
schema-helper-cache-size 130
schema-helper-cleanup 130
schema-helper-cleanup-

interval 130
state-field 125
update-type 125
use-oci 130

database element, the 121, 124

d

D

D
D
d

d
d
D

d

D

d
d
d
d
D
d
d

d

atabase servers
DB2 193
Informix 195
Sybase ASE 194
ataDeploy
invoking 159
ataDeploy integration 163
ataDeploy setup options 18
ata-deploy-elements element,

the 115
ata-format attribute, the 135
b attribute, the 132
B2 194
configuring

database servers 193
multibyte support 212
setting page size 193
setting table size 193

bschema.cfg
consistency rules 59
creating 74
DTD 57
sample mapping 61
validating 74
CR, see "data content

record" 76
dcfg.template 172, 174
dcfg_uds.custom.template 173
dcfg_uds.template 173
dgen.ipl command 173
DL statements 194
elete-tracker attribute, the 127
elta tables
generating 35
naming conventions 183
updating 182

examples 184
eploy

d

setup options 18

eployment
configuration files 25
content pointed to from a

URL 91
custom DCRs 76
DAS 171

triggers 185
data content records 49
data sources 28
data synchronization 33
database

destinations 29
overview 27

dbschema.cfg
consistency rules 59
DTD 57

enhance data prior to 93
enhanced...of nested

DCRs 131
external data source 81
generating base tables 34
generating delta tables 35
incremental 26
invoking 23
lists as replicants 99
metadata 80, 81
narrow tuples 31, 43
process described 33
replicant order numbers 92
rules for...to user-defined

schemas 58
scenarios 27
setup options 18
standalone mode 80
tracker tables 33
tuples 30
updating base tables 36
217

updating tables 38
wide tuples 32, 45

deployment element 116
destination section element 120
destinations, database 29
documentation errata 12
drop.cfg 174
drop-table attribute, the 128
drop-table-prefix attribute,

the 127
drop-table-suffix attribute,

the 128
DTD

dbschema.cfg 57
Interwoven 49

E
elements

database 124
elements, configuration file 105

client 116
column 138
database, the 121
data-deploy-elements 115
deployment 116
destination 120
external-tuple-processor 93
filter 115
in-flow substitution 119
select 133
server 140
source 117
source data location 118
SQL 138
substitution 115
update 137

enforce-ri attribute 125
event persistence 202

E

e
e
e

E
e

F
f

f

G
g

G
G

I
i
i
I

I
i

218
vent Server 172, 199
configuring 202
filtering 204
storing events 202

vent triggers 185
vents 199
xtended attributes, see

metadata 171
xternal Data Source 81
xternal-tuple-processor

element, the 93

iles
configuration

elements 105
dbshcema.cfg DTD 57
include 115

ilters 115
configuring event 204
DAS 172
sample 147

eneration
configuration files 177
etExternalValue() 84
etProtocolVersion() 84

nclude files 115
ncremental deployment 26
nformix

logging 195
nformix database server 195
nstallation

resynchronizing tracker
tables 21

i

i
i
i
i
i
i

i

J
J
J
J
j

L
l
l
l

setup options 18
setup options for daemon 19
Solaris 19
uninstall DataDeploy 22
Windows NT 20

nternationalization 172
administration GUI 214
DAS 213
overview 211

nvoke, DataDeploy 23, 159
s-replicant attribute, the 135
s-url attribute, the 91
w.cfg 172
wat trigger 23
wdd.ipl 159

examples 161
syntax 159
usage 159

wsyncdb.ipl 174, 178
activities 177
creating dbschema.cfg files 74
multibyte support 212
overview 176
processes explained 177
starting 176
usage 189

ava Messaging Service 199
DBC connections 194
DBC-ODBC bridge 174
msconfig_rdbms.xml.example

207

ocale 211
og-level attribute, the 127
ogs

DAS 187
DataDeploy Administration Guide

M
mdc_ddcfg.template 20
metadata

DAS 171
deployment of 80, 81
setting up

mdc_ddcfg.template 20
standalone deployment 80

Microsoft SQL Server, multibyte
support 212

mode
DAS 171
standalone 80

multibyte 211
iwsyncdb.ipl 212

N
name attribute, the 134
name lengths, database

objects 103
name-from-field attribute 134

O
OpenDeploy 211

DataDeploy integration 163
OpenDeploy Release Notes 17
options, iwsyncdb.ipl 189

P
parameter substitutions 109
persistence, events 202
publisher 200

Q
query, SQL 197
queue 199

R
r
r
r

r

r

r

r

r

S
s
s

s

s

s

s

s
s

eal-update attribute, the 126
emove DataDeploy 22
eplicant-order-number

attribute, the 92
eplicants
deploying lists as 99
deploying order numbers 92

esynchronization
tracker tables 21

i-constraint-rule attribute,
the 125

ow-map-cache-file attribute,
the 131

un, see "invoke" 23

cenarios, deployment 27
chema
dbschema.cfg DTD 57

chema-helper-cache-size
attribute, the 130

chema-helper-cleanup attribute,
the 130

chema-helper-cleanup-interval
attribute, the 130

elect attributes
allows-null 135
data-format 135
is-replicant 135
name 134
name-from-field 134
value 134
value-from-field 134

elect element 133
erver
database

configuring 193

s
s

s

S
s
s
s
s
S

s

s
s
s
s
s
S
s

T
t
t

DB2 193
Informix 195
Sybase ASE 194

Informix
logging 195

erver element 140
ervice
Interwoven DataDeploy 19
running DataDeploy as 162

etup options 18
DataDeploy daemon 19
deployment 18

olaris, installation on 19
ort order 195
ource data location element 118
ource element 117
ource type element 117
QL
element, the 138
querying tables 197

tandalone deployment 80
metadata 80

tate, base table 155
tate-field attribute, the 125
tored procedures 195
ubscriber 200
ubstitution element 115, 119
ybase ASE, configuring 194
ynchronization
data 33

able views, creating 39
ables

base 34, 36
delta 35
extracting data from

multiple 149
219

naming conventions 183
querying 197
SQL 197
tracker 33
updating 38

examples 184
updating base 182
updating delta 182

TeamSite Templating
Interwoven DTD 49

TeamSiteTemplating 23
three-tier setup 18
tracker tables 33

resychronizing 21
triggers

DAS 185
filtering events 204

tuples 30
defined 42
deploying narrow 31, 43
deploying wide 32, 45
format 42
preprocessing 93

two-tier setup 18

U
uninstall DataDeploy 22
update

base tables 182
delta tables 182
element, the 137
tables 38

update-type attribute, the 125
URL

deploying content pointed to
from a 91

usage
iwsyncdb.ipl 189

u
u

V
v
v
v
v
v

v

W
W
w

220
se-oci attribute, the 130
ser-defined schema
database element 124
dbschema.cfg 57
deploying metadata 80, 81
deployment rules 58

alue attribute, the 134
alue-from-attribute attribute 77
alue-from-callout attribute 84
alue-from-element attribute 77
alue-from-field attribute,

the 134
iews, creating table 39

indows NT, installation on 20
orkflow 23
schematic of 178
DataDeploy Administration Guide

	DataDeploy™ Administration Guide
	Table of Contents
	About This Book
	Typographical and Notation Conventions
	Typographical Conventions
	iw-home and dd-home Notation on Solaris and Windows Systems
	Notation Conventions for Directory Paths

	Editing Text on Windows Systems
	Online Documentation Errata

	Introduction
	Case Study: Acme Corp.
	The DataDeploy Advantage

	Installation
	Client/Server Setup Options
	Running the DataDeploy Daemon as a Service
	Installation Procedures
	Solaris Systems
	Windows Systems
	Setting Up DAS and Metadata Capture
	Resynchronizing the Tracker Table

	Uninstalling DataDeploy

	Deployment Concepts
	Ways to Invoke Deployment
	Configuration Files
	File Components
	Incremental Deployment

	Deployment Scenarios
	Deploying from TeamSite to a Database: Overview
	Data Sources
	Data Destinations
	Base Table Format: Narrow Tuples
	Base Table Format: Wide Tuples
	Data Synchronization

	Deploying from TeamSite to a Database: Details
	Generating an Initial Base Table
	Generating a Delta Table
	Updating a Base Table
	Table Updates
	Composite Table Views

	Data Organization
	Overview
	Deploying Data with Narrow Tuples
	Deploying Data with Wide Tuples
	Deploying Data to User-Defined Database Schemas: Overview
	Deploying Data to User-Defined Database Schemas: Architectural Details
	Creating Database Tables with User-Defined Database Schemas
	Rules for Implementing User-Defined Database Schemas
	General Rules for Deploying with User-Defined Database Schemas
	Consistency Rules for dbschema.cfg

	Sample Mappings of dbschema.cfg
	Sample of basearea Deployment Section

	iwsyncdb.ipl Support for User-Defined Database Schemas
	Creating dbschema.cfg Files
	Validating dbschema.cfg Files
	Validation of dbschema.cfg Files Using iwsyncdb.ipl -ddgen or -initial
	Validation of dbschema.cfg Files Using iwsyncdb.ipl -validate

	Deploying Custom Data Content Records
	The value-from-element and value-from-attribute Attributes
	The custom Attribute

	Deploying Data to User-Defined Database Schemas: Support for Metadata Deployment
	Standalone Mode
	DAS Mode

	Deploying Data from an External Data Source
	Example Implementation of the External Data Source Interface

	Deploying Data Pointed to from an URL
	Deploying Replicant Order Numbers
	Enhancing Data Before Deployment
	Deploying a Non-replicant Comma Separated List of Values as Replicant Values
	Other Data Organization Issues
	Data Types and Sizes
	Database Object Name Lengths

	Configuration File Details and Examples
	Required Elements
	TeamSite-to-Database
	TeamSite-to-XML
	Database-to-Database
	Database-to-XML
	XML-to-Database
	XML-to-XML

	Parameter Substitutions
	Sample TeamSite-to-Database Configuration File
	Sample File Notes
	User-defined Database Schema <database> Attributes
	Performance Enhancement for Deploying Heavily Nested DCRs
	db Attribute Syntax

	Sample TeamSite-to-XML Configuration File
	Sample Database-to-Database Configuration File
	Sample Database-to-XML Configuration File: Extracting Data Tuples from a Single Table
	Sample Database-to-XML Configuration File: Filtering
	Sample Database-to-XML Configuration File: Extracting Data Tuples from Multiple Tables
	Sample XML-to-Database Configuration File
	Sample XML-to-XML Configuration File
	Starting-State Base Table Configuration File
	Event 1 Configuration File
	Event 2 Configuration File

	Invoking DataDeploy
	iwdd.ipl Command
	Usage
	Syntax
	Examples

	Running DataDeploy as a Service

	Synchronizing OpenDeploy and DataDeploy
	Additional Resources
	Component Location
	Setup
	Component Descriptions
	Usage
	How the Integration Works
	ddsync.ipl Usage
	Notes

	Automating Deployment with DAS
	Overview
	DAS , The Event Server, and Internationalization
	Software Requirements
	DAS Program and Configuration Files
	Configuring DAS
	Editing DataDeploy Configuration Files
	Editing ddcfg.template and drop.cfg
	Editing iwsyncdb.cfg

	Editing iw.cfg
	Running iwsyncdb.ipl
	Starting iwsyncdb.ipl
	iwsyncdb.ipl Activities

	Using DAS
	Figure 3 Key
	Table Update Details
	Specifying How Tables are Updated
	Table Naming Conventions
	Table Update Examples

	TeamSite Event Triggers
	Logging DAS Activities
	Disabling DAS
	iwsyncdb.ipl Usage

	Database Server Configuration
	Overview
	IBM DB2
	Setting Page and Table Sizes
	Installing and Starting JDBC

	Sybase ASE
	Enabling DDL Statements
	Setting Sort Order
	Install Stored Procedures

	Informix
	Enabling Logging

	Querying Tables
	Querying Base and Standalone Tables
	Querying Delta Tables

	Event Server
	How the Event Server Works
	Supported Applications
	Supported Databases
	Prerequisites
	Installing and Enabling the Event Server
	Configuring the Event Sever to Work with DAS
	Setting Up a Database for Event Persistence
	Setting Up Event Filters for DAS
	Sample Filter Section in daemon.cfg
	A Note About Filtering Events by Timestamp

	The jmsconfig_rdbms.xml.example File

	Internationalization
	DataDeploy Configuration Files
	DAS in a Non-U.S. English Environment
	OpenDeploy–DataDeploy Synchronization
	The -mb option for iwsycdb.ipl
	Microsoft SQL Server
	IBM DB2 Specific Information
	DAS Mode
	Example

	Standalone Mode

	The DataDeploy Administration GUI
	Test Environments
	Miscellaneous

	Index

